Early crowdsourcing research

- Two distributed workers work independently, and a third verifier adjudicates their responses.

When we think about early influential crowdsourcing research, we often think of things like Greg Little’s work on iterative algorithms and transcription. Greg got a group of crowd members to collectively transcribe this text — accurately!
Early crowdsourcing research

- Two distributed workers work independently, and a third verifier adjudicates their responses

[Little et al., HCOMP 2009]

When we think about early influential crowdsourcing research, we often think of things like Greg Little’s work on iterative algorithms and transcription. Greg got a group of crowd members to collectively transcribe this text --- accurately!
When we think about early influential crowdsourcing research, we often think of things like Greg Little’s work on iterative algorithms and transcription. Greg got a group of crowd members to collectively transcribe this text — accurately!
Early crowdsourcing research

[Grier 2007]

- Two distributed workers work independently, and a third verifier adjudicates their responses.

But in reality, early crowdsourcing research actually dates back more to the 18th century, when the British Royal Astronomer Neil Maskelyne was tasked with creating nautical sea charts.
He did so by mailing out spreadsheets like this. People would fill in columns, then mail them to another person to cross-check multiple people who filled out the same data, and arbitrate any differences.
In fact, this early pioneer of computing was also a pioneer in crowdsourcing.

Charles Babbage was one of the early people who helped lead the British Royal Almanac process. He also developed several process improvements that we’d be smart to embed in crowdsourcing today. For example, his rule of errors: that two people who do the same task in the same way will make the same errors.
In fact, this early pioneer of computing was also a pioneer in crowdsourcing.

Charles Babbage was one of the early people who helped lead the British Royal Almanac process. He also developed several process improvements that we’d be smart to embed in crowdsourcing today. For example, his rule of errors: that two people who do the same task in the same way will make the same errors.
Two people doing the same task in the same way will make the same errors.

Charles Babbage

In fact, this early pioneer of computing was also a pioneer in crowdsourcing.

Charles Babbage was one of the early people who helped lead the British Royal Almanac process. He also developed several process improvements that we’d be smart to embed in crowdsourcing today. For example, his rule of errors: that two people who do the same task in the same way will make the same errors.
Mathematical Tables Project

- WPA project, begun 1938
- Calculated tables of mathematical functions
- Employed 450 human computers
Mathematical Tables Project

- WPA project, begun 1938
- Calculated tables of mathematical functions
- Employed 450 human computers

The origin of the term computer
Origins of the term

- Jeff Howe, 2006 in Wired
- “Taking [...] a function once performed by employees and outsourcing it to an undefined (and generally large) network of people in the form of an open call.”
Success: games with a purpose

Label every image on the internet using a game
[von Ahn and Dabbish, CHI ’06]
Success: scientific collaboration

- FoldIt: protein-folding game
- Amateur scientists have found protein configurations that eluded scientists for years
More successes

- Largest encyclopedia in history
- Kasparov vs. the world
- NASA Clickworkers
- Disaster reporting
- Collaborative math proofs
- DARPA Red Balloon Challenge
Paid Crowdsourcing

- Pay small amounts of money for short tasks
- Amazon Mechanical Turk: Roughly five million tasks completed per year at 1-5¢ each
 [Ipeirotis 2010]

 Label an image
 Reward: $0.02

 Transcribe audio clip
 Reward: $0.05

- Population: 40% U.S., 40% India, 20% elsewhere
- Gender, education and income are close mirrors of overall population distributions
 [Ross 2010]
Major topics of research

Crowd algorithms
[Little et al., HCOMP 2009]

Incentives and Quality
[Mason and Watts, HCOMP 2009]
[Dow et al., CSCW 2012]

Crowd-powered systems
[Bernstein et al., UIST 2010]
[Bigham et al., UIST 2010]

AI for HCOMP
[Dai, Mausam & Weld, AAAI 2010]

Complex Work
[Kittur et al., UIST 2011]

Not to mention work on data management systems like done at Stanford, at Berkeley and MIT.
Crowdsourcing algorithms
Goal: guide crowds as they work

- Designing crowdsourcing algorithms is often like designing a user interface that will keep a user “in bounds” on your application.
- Challenges
 - Taking unexpected action
 - Trying too hard
 - Trying not hard enough
Crowdsourcing algorithm

- A generalized version of a workflow

- Iterative algorithms [Little et al. 2009]
 - Hand off from one worker to the next

- Most crowdsourcing processes are more parallel, but less interesting algorithmically
Crowdsourcing algorithms

- Open-ended editing: Find-Fix-Verify [Bernstein et al., UIST ’10]
- Graph search [Parameswaran et al., VLDB ’11]
- Clustering [Chilton et al., CHI ’13]
- and many more...

- When write an algorithm? *If you tried this in a straightforward way, would crowds fail? Why?*
Incentives and quality
Incentives

• Does paying more produce better work?
Incentives

• Does paying more produce better work?
 • More work, but not higher-quality work
 [Mason and Watts, HCOMP ’09]
Incentives

• Does paying more produce better work?
 • More work, but not higher-quality work
 [Mason and Watts, HCOMP ’09]
• Does feedback produce better work?
Incentives

• Does paying more produce better work?
 • More work, but not higher-quality work
 [Mason and Watts, HCOMP ’09]

• Does feedback produce better work?
 • Self-assessment and expert assessment both improve the quality of work
 [Dow, Kulkarni, Klemmer and Hartmann, CSCW ’11]
Incentives
[Shaw, Horton and Chen, CSCW ’11]

• Which of these approaches improve quality?
 • Comparison to other workers
 • Normative claims: “it’s important that you try hard”
 • Solidarity: your team gets a bonus if you are right
 • Humanization: “thanks for working; I’m Aaron.”
 • Reward or punish accuracy with money
 • Reward or punish agreement with money
 • Bayesian truth serum: predict others’ responses
 • Bet payment on the accuracy of your responses
Incentives
[Shaw, Horton and Chen, CSCW ’11]

• Which of these approaches improve quality?
 • Comparison to other workers
 • Normative claims: “it’s important that you try hard”
 • Solidarity: your team gets a bonus if you are right
 • Humanization: “thanks for working; I’m Aaron.”
 • Reward or punish accuracy with money
 • Reward or punish agreement with money
 • Bayesian truth serum: predict others’ responses
 • Bet payment on the accuracy of your responses
Motivations
[Antin and Shaw, CHI ’12]

• Ask workers: “I am motivated to do HITs on Mechanical Turk...”
 • To kill time
 • To make extra money
 • For fun
 • Because it gives me a sense of purpose
Motivations
[Antin and Shaw, CHI ’12]

• Ask workers: “I am motivated to do HITs on Mechanical Turk...”
 • To kill time
 • To make extra money
 • For fun
 • Because it gives me a sense of purpose

• List experiment: vary which reasons appear in the list, and ask how many reasons the participant agrees with
 • This technique counters social desirability bias
Motivations
[Antin and Shaw, CHI ’12]

- US workers
 - 40% overreporting of money as a reason to work
- India-based workers
 - 142% underreporting of killing time and 60% underreporting fun as reasons
 - Money was not over- or under-reported
Communitysourcing
Engaging Local Crowds to Perform Expert Work Via Physical Kiosks

Kurtis Heimerl, Brian Gawalt, Kuang Chen
Tapan Parikh, Björn Hartmann
University of California, Berkeley

CHI 2012
Judging quality explicitly

- Gold standard judgments [Le et al., SIGIR CSE ’10]
 - Include questions with known answers
 - Performance on these “gold standard” questions is used to filter work
Judging quality explicitly

- **Gold standard judgments** [Le et al., SIGIR CSE ’10]
 - Include questions with known answers
 - Performance on these “gold standard” questions is used to filter work
- **Get Another Label** [Sheng, Provost, Ipeirotis, KDD ’08]
 - Estimate the correct answer and worker quality jointly
Judging quality implicitly
[Rzeszotarski and Kittur, UIST '12]

- Observe low-level behaviors
 - Clicks
 - Backspaces
 - Scrolling
 - Timing delays
- SVMs on these behaviors predict work quality
- Limitation: models must be built for each task
Crowd-powered systems
Main idea

- Embed crowd intelligence inside of user interfaces and applications we use today
Main idea

- Embed crowd intelligence inside of user interfaces and applications we use today
Automatic clustering generally helps separate different kinds of records that need to be edited differently, but it isn't perfect. Sometimes it creates more clusters than needed, because the differences in structure aren't important to the user's particular editing task. For example, if the user only needs to edit near the end of each line, then differences at the start of the line are largely irrelevant, and it isn't necessary to split based on those differences. Conversely, sometimes the clustering isn't fine enough, leaving heterogeneous clusters that must be edited one line at a time. One solution to this problem would be to let the user rearrange the clustering manually, perhaps using drag-and-drop to merge and split clusters. Clustering and selection generalization would also be improved by recognizing common text structure like URLs, filenames, email addresses, dates, times, etc.

Clustering and selection generalization would also be improved by recognizing common text structure like URLs, filenames, email addresses, dates, times, etc.
VizWiz
[Bigham et al., UIST ’10]

- Visual question answering for the blind

<table>
<thead>
<tr>
<th>What color is this pillow?</th>
<th>What denomination is this bill?</th>
<th>Do you see picnic tables across the parking lot?</th>
<th>What temperature is my oven set to?</th>
<th>Can you please tell me what this can is?</th>
<th>What kind of drink does this can hold?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(89s) I can’t tell. (105s) multiple shades of soft green, blue and gold</td>
<td>(24s) 20 (29s) 20</td>
<td>(13s) no (46s) no</td>
<td>(69s) it looks like 425 degrees but the image is difficult to see. (84s) 400 (122s) 450</td>
<td>(183s) chickpeas. (514s) beans (552s) Goya Beans</td>
<td>(91s) Energy (99s) no can in the picture (247s) energy drink</td>
</tr>
</tbody>
</table>

- 1 to 2 minute responses by keeping workers on fake tasks until needed
Crowd-powered databases

- Database with open-world assumptions:
 \[
 \text{SELECT * FROM ice_cream_flavors}
 \]
- Several university flavors
 - Berkeley: CrowdDB [Franklin et al., SIGMOD ’11]
 - MIT: Qurk [Marcus et al., CIDR ’11]
 - Stanford: Deco [Parameswaran et al. ’11]
- Tackling many important optimization questions: e.g., joins, ranking, sorting
Realtime crowdsourcing
[Bernstein et al., UIST '11]
Realtime crowdsourcing
[Lasecki et al., UIST ’11 and UIST ’12]

- Realtime captioning using shotgun gene sequencing techniques
Artificial intelligence for crowds
TurKontrol: AIs guiding crowds
[Dai, Mausam and Weld, AAAI ’10]

• Workflow planning as a decision-theoretic optimization problem
• Trade off quality vs. number of workers required
 • POMDP to decide: do we need a vote? do we need more voters? do we need more improvement?
Complex work
CrowdForge
[Kittur et al., UIST ’11]

- Crowdsourcing as a map-reduce process
- To write a Wikipedia page, partition on topics, map to find facts and then reduce into a paragraph
Turkomatic
[Kulkarni, Can, and Hartmann, CSCW ’12]

- Let the workers decide on task design
- Is a task too complicated for D? If so, ask for sub-tasks and recurse. If not, do it yourself.
- Creating a blog with content: