Attention and Interruption

MICHAEL BERNSTEIN
SPRING 2013
cs376.stanford.edu
Attention and Interruption

MICHAEL BERNSTEIN
SPRING 2013
cs376.stanford.edu
“In an information-rich world, the wealth of information means a dearth of something else: a scarcity of whatever it is that information consumes.

- Herb Simon
“In an information-rich world, the wealth of information means a dearth of something else: a scarcity of whatever it is that information consumes.

What information consumes is rather obvious: it consumes the attention of its recipients.

- Herb Simon
“In an information-rich world, the wealth of information means a dearth of something else: a scarcity of whatever it is that information consumes.

What information consumes is rather obvious: it consumes the attention of its recipients.

Hence a wealth of information creates a poverty of attention and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.”

- Herb Simon
“In an information-rich world, the wealth of information means a dearth of something else: a scarcity of whatever it is that information consumes.

What information consumes is rather obvious: it consumes the attention of its recipients.

Hence a wealth of information creates a poverty of attention and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.”

- Herb Simon
Why study attention?

- Understand: how is technology impacting our ability to get things done?
- Design: help people manage their attention
Attention
Task Switching
[González and Mark, CHI ’04]

• Method: observation of 14 knowledge workers
• Research question: how do they organize their work and tasks?
• Results:
 • Switch tool every two minutes
 • Switch task every three minutes
 • Switch working sphere every ten minutes
Task Switching
[González and Mark, CHI ’04]

- Method: observation of 14 knowledge workers
- Research question: how do they organize their work and tasks?
- Results:
 - Switch tool every two minutes
 - Switch task every three minutes
 - Switch working sphere every ten minutes
Task Switching
[González and Mark, CHI ’04]

- Method: observation of 14 knowledge workers
- Research question: how do they organize their work and tasks?
- Results:
Task Switching
[González and Mark, CHI ’04]

- Method: observation of 14 knowledge workers
- Research question: how do they organize their work and tasks?
- Results:
 - Switch tool every two minutes
Task Switching
[González and Mark, CHI ’04]

- Method: observation of 14 knowledge workers
- Research question: how do they organize their work and tasks?
- Results:
 - Switch tool every two minutes
 - Switch task every three minutes
Task Switching
[González and Mark, CHI ’04]

- Method: observation of 14 knowledge workers
- Research question: how do they organize their work and tasks?
- Results:
 - Switch tool every two minutes
 - Switch task every three minutes
 - Switch working sphere every ten minutes
The cost of multitasking
[Ophir, Nass, Wagner, PNAS ’09]

- People who self-report as high multitaskers are actually worse at multitasking
- Proposed mechanism: worse at filtering out irrelevant stimuli
The cost of email multitasking
[Mark, Voida and Cardello, CHI ’12]

• How is email usage impacting attention management?
• Method: cut off all email usage from employees for five days
The cost of email multitasking
[Mark, Voida and Cardello, CHI ’12]

• How is email usage impacting attention management?
• Method: cut off all email usage from employees for five days
• Results
The cost of email multitasking
[Mark, Voida and Cardello, CHI ’12]

- How is email usage impacting attention management?
- Method: cut off all email usage from employees for five days
- Results
 - Less multitasking
The cost of email multitasking
[Mark, Voida and Cardello, CHI ’12]

• How is email usage impacting attention management?
• Method: cut off all email usage from employees for five days
• Results
 • Less multitasking
 • Longer task focus
The cost of email multitasking
[Mark, Voida and Cardello, CHI ’12]

• How is email usage impacting attention management?
• Method: cut off all email usage from employees for five days
• Results
 • Less multitasking
 • Longer task focus
 • Less stress (as measured by heart rate monitors)
Interuption
Interruption
The cost of interruption
[Mark, González, and Harris, CHI ’05]
The cost of interruption
[Mark, González, and Harris, CHI ’05]

- 57% of working spheres get interrupted
The cost of interruption
[Mark, González, and Harris, CHI ’05]

- 57% of working spheres get interrupted
- After an interruption...
The cost of interruption
[Mark, González, and Harris, CHI ’05]

- 57% of working spheres get interrupted
- After an interruption...
 - Two intervening activities before resuming
The cost of interruption
[Mark, González, and Harris, CHI ’05]

• 57% of working spheres get interrupted
• After an interruption...
 • Two intervening activities before resuming
 • 25 minutes before resuming
Sensing interruptability
[Fogarty et al., TOCHI ’05]

- Goal: build a model of human interruptability from available sensors
Sensing interruptability
[Fogarty et al., TOCHI ’05]

- Goal: build a model of human interruptability from available sensors
- Gathered ground truth interruptability using experience sampling every ~2hr
Sensing interruptability
[Fogarty et al., TOCHI ’05]

- Goal: build a model of human interruptability from available sensors
- Gathered ground truth interruptability using experience sampling every ~2hr
 - Chance accuracy at predicting “Highly non-interruptable”: 68%
Sensing interruptability
[Fogarty et al., TOCHI ’05]

- Goal: build a model of human interruptability from available sensors
- Gathered ground truth interruptability using experience sampling every ~2hr
 - Chance accuracy at predicting “Highly non-interruptable”: 68%
 - People viewing audio and video: 77%
Sensing interruptability
[Fogarty et al., TOCHI ’05]

- Goal: build a model of human interruptability from available sensors
- Gathered ground truth interruptability using experience sampling every ~2hr
 - Chance accuracy at predicting “Highly non-interruptable”: 68%
 - People viewing audio and video: 77%
 - Trained machine learning model: 82%
Sensing interruptability
[Fogarty et al., TOCHI ’05]

- Goal: build a model of human interruptability from available sensors
- Gathered ground truth interruptability using experience sampling every ~2hr
 - Chance accuracy at predicting “Highly non-interruptable”: 68%
 - People viewing audio and video: 77%
 - Trained machine learning model: 82%
- Most highly-predictive feature: any talking
Sensing interruptability
[Fogarty et al., TOCHI ’05]

- Goal: build a model of human interruptability from available sensors
- Gathered ground truth interruptability using experience sampling every ~2hr
 - Chance accuracy at predicting “Highly non-interruptable”: 68%
 - People viewing audio and video: 77%
 - Trained machine learning model: 82%
- Most highly-predictive feature: any talking