THINK LIKE A FORAGER

LIQIONG YANG
2015-11-17
Learning goals

• Understand Patch Model
• Understand Diet Model
• Know the relation between these models and real life
Optimal Foraging Theory

- What types of food to eat?
- Where & how long to search for food?
- What type of search path to use?
Optimal Foraging Theory

• Any food item has both a **cost** (time & energy) & a **benefit** (net food value).

• The relative value of each of these determines how much ‘profit’ a particular item represents.

• **Efficient** foragers should select **most profitable** prey!
Many behaviors can be understood as foraging.

Consider humans and many ways we forage everyday.

They share a number of similar concerns, constrains, and behaviors.
Suppose you go to a Shopping Mall with $2,500. There are many different stores. You can buy everything you like within the budget. What’s your strategy to buy things?

2-3 people
Patch Model Example

- Big Garden
- Many flower species
Charnov’s Marginal Value Theorem

- Bees have to move from one patch to another.
- Flower patches have different densities.
- Bees cannot evaluate the quality of a patch until they are in it. So Bees have to decide when to leave in search of a more profitable area.
Question

- When a bee should leave the current patch?
- Any volunteer?
Charnov’s Marginal Value Theorem

• The forager should leave a patch when the expected rate of foraging at another patch minus costs of moving to that patch becomes greater than the current rate of foraging.

• When they are equal to each other, that point is called **marginal value**.
Charnov’s Marginal Value Theorem

- t: time spent on one flower patch
- T_t: time spent from one patch to another
- Gain: amount of nectar gathered
- When to leave?
Charnov’s Marginal Value Theorem
Charnov’s Marginal Value Theorem
Between-Patch & Within-Patch Enrichment

• **Modify** the environment so as to *gain more*!

 A. minimize between-patch foraging costs

 B. improve within-patch foraging results

• Example
Discussion

• Use Charnov’s Marginal Value Theorem to analyze how the optimal leave time will change for both enrichments

• 2-3 people
Between-Patch & Within-Patch Enrichment

![Graph showing between-patch and within-patch enrichment](image)
Diet Model

• What kinds of prey should the predator pursue, and what kinds should be ignored?
Diet Model

- If a predator is too specialized, it will spend all of its time searching.
- If the predator is too generalized, then it will pursue too much unprofitable prey.
Discussion

• Imagine you have many food in your refrigerator: grain, eggs, meat, vegetables etc. You are very hungry. How will you choose?

• 2-3 people
Diet Model

- Selection algorithm
- Principle: add a food if it is more profitable (2.19)
- Steps:
 - Rank the prey types by their profitability
 - Add prey types by decreasing profitability
 - Make sure that you should only add another type that will bring more profit, otherwise just stay on the current type.
Beyond performance
Learning goals

- Overview of the design space for adaptive interfaces
- Understand the tradeoffs between performance and awareness.
Why to personalize GUI?

- Reduce visual complexity
- Improve interaction efficiency (performance)
How to personalize GUI?

Figure 1. Sample screenshots from the interface layers used in Study 1: minimal interface layer (A), marked interface layer (B), and full interface layer (C).
What needs to consider?

- Controlled by system or user
- Fine-grained or coarse-grained
- Visibility of change
- Frequency of change
Discussion

• What are the advantages and disadvantages of controlled by system and controlled by user?

• 2-3 people
• Everything is fine, BUT?!
Discussion

• Everything has two sides. Personalized GUI can improve the current task performance, but what are the bad impacts?

• 3-4 people
Awareness

• Awareness of the full set of available features

• When you are interacting with GUI, you are highly possible to “learn” some other features by the way.
Feature Awareness in Personalized Interfaces

- Since fewer buttons etc. are provided, user can learn much less.

- Impact new task performance.
How to measure?

- Recognition rate of unused features
- New task performance
Thanks!