Web experiments
Benjamin Weggersen, Pallavi Agarwal
Learning goals

- Focus web experiments around organizational goals
- How to facilitate shorter testing cycles
- When to use A/B testing and when to use MVT
- The Facebook experiment and its controversy
- The debate on ethics
- Goodbye Google - data driven vs experience
Controlled experiments on the web

Ron Kohavi and others
...the ability to experiment easily is a critical factor for Web-based applications. The online world is never static. There is a constant flow of new users, new products and new technologies.

– Hal Varian, 2007
Which button had the highest sign-up rate?
The results

<table>
<thead>
<tr>
<th>Button</th>
<th>Variation</th>
<th>Est. conv. rate</th>
<th>Chance to Beat Orig.</th>
<th>Observed Improvement</th>
<th>Conv./Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>Original</td>
<td>7.51% ± 0.2%</td>
<td>—</td>
<td>—</td>
<td>5851 / 77858</td>
</tr>
<tr>
<td>Learn More</td>
<td>Learn More</td>
<td>8.91% ± 0.2%</td>
<td>100%</td>
<td>18.6%</td>
<td>6927 / 77729</td>
</tr>
<tr>
<td>Join Us Now</td>
<td>Join Us Now</td>
<td>7.62% ± 0.2%</td>
<td>73.5%</td>
<td>1.37%</td>
<td>5915 / 77644</td>
</tr>
<tr>
<td>Sign Up Now</td>
<td>Sign Up Now</td>
<td>7.34% ± 0.2%</td>
<td>13.7%</td>
<td>-2.38%</td>
<td>5660 / 77151</td>
</tr>
</tbody>
</table>
Media: “Family”
The results

<table>
<thead>
<tr>
<th>Variation</th>
<th>Est. conv. rate</th>
<th>Chance to Beat Orig.</th>
<th>Observed Improvement</th>
<th>Conv./Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>8.54% ± 0.2%</td>
<td>—</td>
<td>—</td>
<td>4425 / 51794</td>
</tr>
<tr>
<td>Family Image</td>
<td>9.66% ± 0.2%</td>
<td>100%</td>
<td>13.1%</td>
<td>4996 / 51696</td>
</tr>
<tr>
<td>Change Image</td>
<td>8.87% ± 0.2%</td>
<td>92.2%</td>
<td>3.85%</td>
<td>4595 / 51790</td>
</tr>
<tr>
<td>Barack’s Video</td>
<td>7.76% ± 0.2%</td>
<td>0.04%</td>
<td>-9.14%</td>
<td>3992 / 51427</td>
</tr>
<tr>
<td>Sam’s Video</td>
<td>6.29% ± 0.2%</td>
<td>0.00%</td>
<td>-26.4%</td>
<td>3261 / 51864</td>
</tr>
<tr>
<td>Springfield Video</td>
<td>5.95% ± 0.2%</td>
<td>0.00%</td>
<td>-30.3%</td>
<td>3084 / 51811</td>
</tr>
</tbody>
</table>

Relevance Rating: 5 / 5
JOIN THE MOVEMENT

Email Address

Zip Code

LEARN MORE

CONTINUE to WEBSITE
Demo: Mailchimp

What would you like to test?
Choose the variable you want to test. We'll generate a campaign for each combination of those variable—up to 3 combinations.

2
Subject lines

What percentage of your recipients should receive your test combinations?

50%

How should we determine a winning combination?

By open rate after 4 hours

Summary

<table>
<thead>
<tr>
<th>Recipients per combination</th>
<th>238 Approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>We recommend at least 5,000 recipients per combination.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test segment</th>
<th>50% 476</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Winning segment</th>
<th>50% 476</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total recipients</th>
<th>952</th>
</tr>
</thead>
</table>
- A single metric
- Short-term vs. Long-term goals
- Choose components with lower variability
- Implications for organizations
Section 1: Overall Evaluation Criterion

A single metric

Page clicks + Conversion rate + Repeat visits = OEC

0.15 + 0.45 + 0.40 = 0.15 + 0.45 + 0.40
Section 1: Overall Evaluation Criterion

Short-term vs. Long-term goals

- A good OEC should … include factors that predict long-term goals, such as predicted lifetime value and repeat visits.

- Example:
 - How might this influence ad revenue?
 - How might this influence repeat visits?
Section 1: Overall Evaluation Criterion

Choose components with lower variability

\[n = \frac{16\sigma^2}{\Delta^2} \]
Section 1: Overall Evaluation Criterion

Components with lower variability

Revenue

\[n = \frac{16 \times 30^2}{(3.75 \times 0.05)^2} = 409,000 \]

Conversion rate

\[n = \frac{16 \times (0.05 \times (1 - 0.05))}{(0.05 \times 0.05)^2} = 122,000 \]
Section 1: Overall Evaluation Criterion

Implications for organizations

- In formulating an OEC, an organization is forced to weigh the value of various inputs and decide their relative importance.

- This hard up-front work can align the organization and clarify goals.
Activity: Overall Evaluation Criterion

Break into groups of three. Each of you takes the role of either a CEO, a Marketing Director, or a Designer. Give weights to these criterions and argue why. You all work for Amazon.

- Page views
- Repeat visits
- Conversion rate (percentage of visits that include a purchase)
- Units purchased
- Revenue
- Bounce rate (percentage of users who exits after one page visit)
Section 1: Overall Evaluation Criterion

From the commentaries

- While it's clear when you're performing A/B tests you must have something measurable and thus comparable, blindly picking a "good enough" metric may not be the right answer. The key is achieving an overall improvement (with all stakeholders in mind; the company and the users).

Vincent Chan
Section 2: Ramp up and auto-abort

- Gradual increase
- Real time analysis with auto-abort
- Requires good hash function
- Implications for organizations
Section 2: Ramp up and auto-abort

Gradual increase

99.9% / 0.1% \Rightarrow 99.5% / 0.5% \Rightarrow 97.5% / 2.5%

\Rightarrow 90% / 10% \Rightarrow 50% / 50%
Section 2: Ramp up and auto-abort

Real time analysis with auto-abort

- At each step you can analyze the data to make sure there are no egregious problems with the Treatment before exposing it to more users.

\[n = \frac{16\sigma^2}{\Delta^2} \]

\(\Delta\): sensitivity
Section 2: Ramp up and auto-abort

Real time analysis with auto-abort

Detect 1% change in OEC

1/20th of running time

~17 hrs

Detect 20% change in OEC

1/400th of running time

< 1 hr
Section 2: Ramp up and auto-abort

Requires good hash function

- Support monotonic ramp-up
- Slowly assign users to the Treatment
- New assignments should not change previous assignments
Section 2: Ramp up and auto-abort

Implications for organizations

- Allows organizations to make bold bets and innovate faster
- Auto-abort lets you to more confidently test on larger groups of users, thus reducing running time
- Integrate customer feedback directly in the development process through prototypes and experimentation
Activity: Ramp up and auto-abort

Break into groups of three. Ramp up and auto-abort allows you to iterate much faster, and still have statistical power. Are shorter tests always preferred? Why/why not?
Section 2: Ramp up and auto-abort

From the commentaries

- The reason why 50% is ultimately chosen as the fraction to ramp up to is suggested by the author to maximize the power of an experiment while simultaneously minimizing the running time. Many students wrote this.

- ... in product design and experimentation [it] is very important that we test and experiment with intention to fail quickly allowing ourselves to adjust and change accepting / rejecting ideas. Irfan Mulic
Section 3: A/B test or MVT

- How are they different?

- Interaction between factors

- Bold bets and very different design
Section 3: A/B test or MVT

How are they different?
Section 3: A/B test or MVT

Interaction between factors

- Two factors interact if their combined effect is different from the sum of the two individual effects.
- Synergistic
- Antagonistic
<table>
<thead>
<tr>
<th>Media</th>
<th>Original</th>
<th>8.54% ± 0.2%</th>
<th>—</th>
<th>—</th>
<th>—</th>
<th>4425 / 51794</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Image</td>
<td></td>
<td>9.66% ± 0.2%</td>
<td>100%</td>
<td>13.1%</td>
<td>4996 / 51696</td>
<td></td>
</tr>
<tr>
<td>Change Image</td>
<td></td>
<td>8.87% ± 0.2%</td>
<td>92.2%</td>
<td>3.85%</td>
<td>4595 / 51790</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Button</th>
<th>Original</th>
<th>7.51% ± 0.2%</th>
<th>—</th>
<th>—</th>
<th>—</th>
<th>5851 / 77858</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn More</td>
<td></td>
<td>8.91% ± 0.2%</td>
<td>100%</td>
<td>18.6%</td>
<td>6927 / 77729</td>
<td></td>
</tr>
<tr>
<td>Join Us Now</td>
<td></td>
<td>7.62% ± 0.2%</td>
<td>73.5%</td>
<td>1.37%</td>
<td>5915 / 77644</td>
<td></td>
</tr>
</tbody>
</table>
CHANGE
WE CAN BELIEVE IN
Section 3: A/B test or MVT

Interaction between factors

- Large interactions between factors are actually rarer than most people believe
- MVT without interaction can be thought of as running multiple A/B tests in parallel
- Ask yourself: how important is it to test interaction?
Section 3: A/B test or MVT

Bold bets and very different design

- MVT can lead to local maximum
- Try some bold bets and very different designs (A/B testing)
Section 3: A/B test or MVT

From the commentaries

- Facebook’s Protect and Care team

 Jena Cummiskey

- … letting two designers come up with very different designs and then testing them head to head … reminds me of the parallel prototyping … I’d expect that different people could really increase the diversity of designs.

 Matt Erhart
Section 1: Overall Evaluation Criterion

Section 2: Ramp up and auto-abort

Section 3: A/B test or MVT
The Facebook Experiment

Adam D.I Kramer, Jamie E. Guillory, Jeffrey T. Hancock
Discussion

Your friend posts a picture on Facebook. He is having dinner in Paris backdropped with the Eiffel tower.

What would your response be?
What did the experiment want to prove?

Emotional Contagion

- Emotional states can be transferred to others
- Occurs outside of in-person interaction between individuals
- Nonverbal cues are not strictly necessary
- No ‘Shared Experience’ controversy
Experiment details

Modifying news feed

- Users who viewed Facebook in English

- Two parallel experiments were conducted:
 - exposure to friends’ *positive* emotional content reduced
 - exposure to friends’ *negative* emotional content reduced

- 4 groups : User group selection based on User ID

- Positive/negative posts determined by LIWC software
Findings

- Others emotions influence ours
- Non-verbal cues are not necessary
- Withdrawal effect
- Cross-emotional contagion absent
- Online messages affect offline behavior
- Effect was small

Fig. 1. Mean number of positive (Upper) and negative (Lower) emotion words (percent) generated people, by condition. Bars represent standard errors.
Why is this study important? What do we learn about web experiments?
Criticism - Unethical

Furor Erupts Over Facebook’s Experiment on Users
Almost 700,000 Unwitting Subjects Had Their Feeds Altered to Gauge Effect on Emotion

- Affected user behavior
- No user consent
- The study ‘harmed’ participants
- Not observational but experimental
Debate

The study is ethical, because the effect size was small

Break into groups of three.

The groups on my left must argue why the study is ethical. The groups on my right argues why it is not.
Support
Many researchers published articles in favor of the study

In defense of Facebook
Stop complaining about the Facebook study. It's a golden age for research

The Test We Can—and Should—Run on Facebook
Ethics

Effect size is small

- Shifts user’s own emotional word use by *two hundredths of a standard deviation*
- Facebook *removed* content; *did not add* content to *induce* behavior
- Controlled experiments are *always* being run by Facebook, Google, Twitter
 “When you use a service you don’t pay for, you are not the customer, you are the product”
Problems with the experiment

- Fewer positive words produced does not mean that the user’s **actual** mood was affected

- Use of positive or negative words does not represent user’s current emotional state
Problems with the experiment
Using Linguistic Inquiry and Word Count application

Consider two sentences:

“"I am not happy.""

“"I am not having a great day.""

LIWD score : +2 for positive (because of the words “great” and “happy”)
+2 for negative (because of the word “not” in both texts)

Actual score should be +2 on the negative scale, and 0 on the positive scale
Support for experiment by researchers

Future research will be affected

“Facebook is effectively engineering the public”

Scientific community’s access to one of the largest and richest sources of data on human behavior decreased

“amazing new platform for social science research - companies like Facebook actually have a moral obligation to conduct such research”

Less public visibility of experiments
Goodbye, Google

Douglas Bowman
Design at Google

Reliance on data

- Billions of shareholders at stake
- Millions of users
- Design decisions on the basis of A/B testing:
 - Reduce design decision to a simple logic problem
 - Launch if data in your favor
- No daring design decisions can be taken - testing 41 shades of blue for toolbar on Google pages
Douglas Bowman

Data, Not Design, Is King in the Age of Google

First visual designer at Google
Quit Google to join Twitter as Creative Director
Greater opportunity to shape the look and feel of Twitter

“Using data is fundamental to what we do,” Mr. Bowman said. “But we take all that with a grain of salt. Anytime you make design changes, the most vocal people are the ones who dislike what you’ve done. We don’t just throw the numbers in a spreadsheet.”
Discussion

Kahavi says that **data trumps intuition** and Bowman believes in **daring design decisions**.

Are there certain situations for which **A/B testing** is always better than **hiring smart designers**, or vice versa? Why?
Commentaries

“I wonder if a designer could be trained in these kinds of factors and develop an ability to accurately predict interaction. That would be a useful skill but it’s not clear it could be explicated training.”

- Matt

“... automate creation and experimenting for system changes. I think it would be amazing if one day all we needed to do was feed an AI system a set of kinds of design changes for an interface, and that system would automatically generate controlled experiences, iterate, and learn to slowly begin changing interfaces completely on its own based on confidence thresholds.”

- Jesse
Thank you!