# COGNITION AND DESIGN 

Scott Klemmer and Michael Bernstein

## Today: how user interfaces connect with cognitive strengths

- Mental models
- Gulfs of evaluation and execution
- Direct manipulation
-Externalized cognition

Mental models

## Consider this refrigerator...


problem:
freezer too cold, but fresh food just right

## The refrigerator has two dials

How does the system work?
Normal Setting
$C$ and 4
Colder Fresh Food
Coldest Fresh Food
Colder Freezer
C and 5-6
$B$ and 7
D and 6-7
Warmer Fresh Food OFF (both)

## A likely model...

 i.e., independent controls

Actual model
Now can you fix the problem?


Mental model

- User's thought process about how something works in the real world
- Correct mental model: one dial controls the cooling unit, the other controls the ratio of cold air to fridge and freezer - Incorrect mental model: two separate cooling units


## Goal of design: instill the correct mental model

- If users have the correct understanding of a design, they can confidently take action
- Users develop their model through interaction with the system
- Designers begin with the correct mental model
- Often, the user's model != the designer's model


## Conceptual Model Mismatch

- Mismatch between designer's \& user's conceptual models leads to...
- Slow performance
- Errors
- Frustration
-...

Mental models arise from experience, metaphor, and analogical reasoning

- "A text processor is a typewriter"
- We have models (beliefs) about our own behavior, of others, of objects, software...
- Our models are incomplete, inconsistent, unstable in time, and often rife with superstition


## Slips

- Correct model but accidental execution


## Mistakes

- Incorrect model
- e.g., looking for a save button in Google Docs
- e.g., not using the clutch in a manual transmission car


## Butterfly Ballot



## Clear mapping between control + function



## Clear mapping between control + function



00
00

## Example (good)



# Gulfs of execution and evaluation 

How might we improve the measuring cup?


The Gulf of Execution: How do you do?

## The Gulf of Execution: How do you do?

- How do I add more water to the measuring cup?
- How do I remove water?


The Gulf of Evaluation: How do you know?

## The Gulf of Evaluation: How do you know?

- How much water is in the measuring cup now?



## The making of gulfs. How easily can someone:

- Determine the function of the device?
- Tell what actions are possible?
- Determine mapping from intention to physical movement?
- Perform the action?
- Tell what state the system is in? / if it's in desired state?
- Determine mapping from system state to interpretation


## To reduce the gulfs, provide...

- Visibility (perceived affordances or signifiers)
- Feedback
- Consistency (also known as standards)
- Non-destructive operations (hence the importance of undo)
- Discoverability: All operations can be discovered by systematic exploration of menus
- Reliability. Operations should work. Period. And events should not happen randomly.


## Direct manipulation

## Act directly on the object of interest

indirect:


## Act directly on the object of interest

 direct:

## Direct manipulation

- Immediate feedback on actions
- Continuous representations of objects
- Leverage metaphor


## COMMAND LINE v. GUI

## Principle <br> Command <br> Line

## CUI

Visibility
Feedback
Consistency
Non-destructive
Discoverability
Reliability

## Successful Indirection?


"If technology is to provide an advantage, the correspondence to the real world must break down at some point."

- Jonathan Grudin


## NEW

TECHNOLOGY

## CURRENT

## PRACTICE

Final Scratch

## Externalizing

cognition

We need two volunteers. One stays, one goes outside.

## Let's play number scrabble

-Two players

- Numbers available: I, 2, 3, 4, 5, 6, 7, 8, 9
- Players draw alternately, without replacement
-Win if three of your numbers add up to 15


## Let's play number scrabble

- X takes 8
- Otakes 2
- X takes 4
- O takes 3
- X takes 5

What should $\bigcirc$ do?

OK, go outside. Don't talk to your partner. We'll get them in a second.

We'll encode this game visually


Let's go get Player Two.

## Tic-Tac-Toe: You are Player O.



| $x$ | $o$ | $x$ |
| :---: | :---: | :---: |
|  | $x$ |  |
| 0 |  |  |

## The Color Puzzle

goal Put all the colors in one bin
rule I Only one color can be transferred at a time
rule 2 Colors can only be moved if certain properties hold:

can only be put in an empty bin

can be put in empty bins or bins with

$\square$can be put in empty or $\square$ or

## The Towers of Hanoi Puzzle

goal Put all the rings on one peg
rule I Only one ring can be transferred at a time
rule 2 A ring can only be transferred to a peg on which it will be the smallest
rule 3 Only the smallest ring on a peg can be transferred to another peg


## Anscombe's Quartet

| Set 4 |  | Set B |  | Set C |  | Set D |  | Summary Statistics$\begin{array}{ll} u_{X}=9.0 & \sigma_{X}=3.317 \\ u_{Y}=7.5 & \sigma_{Y}=2.03 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | Y | X | Y | X | Y | X | Y |  |
| 10 | 8.04 | 10 | 9.14 | 10 | 7.46 | 8 | 6.58 |  |
| 8 | 6.95 | 8 | 8.14 | 8 | 6.77 | 8 | 5.76 | Linear Regression |
| 13 | 7.58 | 13 | 8.74 | 13 | 12.74 | 8 | 7.71 | $Y=3+0.5 X$ |
| 9 | 8.81 | 9 | 8.77 | 9 | 7.11 | 8 | 8.84 | $\mathbf{R}^{\mathbf{2}}=0.67$ |
| 11 | 8.33 | 11 | 9.26 | 11 | 7.81 | 8 | 8.47 |  |
| 14 | 9.96 | 14 | 8.1 | 14 | 8.84 | 8 | 7.04 |  |
| 6 | 7.24 | 6 | 6.13 | 6 | 6.08 | 8 | 5.25 |  |
| 4 | 4.26 | 4 | 3.1 | 4 | 5.39 | 19 | 12.5 |  |
| 12 | 10.84 | 12 | 9.11 | 12 | 8.15 | 8 | 5.56 |  |
| 7 | 4.82 | 7 | 7.26 | 7 | 6.42 | 8 | 7.91 |  |
| 5 | 5.68 | 5 | 4.74 | 5 | 5.73 | 8 | 6.89 |  |

[Anscombe 73]

Set A


## Set C



Set B


Set D

## Problem Solving as Representation

"Solving a problem simply means representing it so as to make the solution transparent"

## Naturalness Principle

- Experiential cognition is aided when the properties of the representation match the properties of the thing being represented

Offloading Working Memory

## e.g., Getting Things Done

## Proteus Ingestable Networked Pill



- Sensor and transmitter encapsulates pill
- Stomach acid is part of battery
- Transmits pill
--> patch
--> iPhone
--> Internet

Offloading Computation

## Actual model

Now can you fix the problem?


## When interfaces help people distribute cognition, it can...

- Encourage experimentation
- Scaffold learning and reduce errors through redundancy
- Show (only) differences that matter
- Convert slow calculation into fast perception
- Support chunking, especially by experts
- Increase efficiency
- Facilitate collaboration
external feedback: cheap experimentation


## 




## London Underground




## Color: Edward Tufte



## Color: Edward Tufte



Chase and Simon, 1973:
Experts learn to "chunk" visual stimuli


Chase and Simon, I973:
Experts learn to "chunk" visual stimuli


## Chunking in Interfaces

Ideally, \%e want a one-to-one mapping bet repen concepts and gestures. User interfaces should be designed with a clearobjective of the mental model we aredung to establish/ Fhrasing can reinforce The chunks or structure of the model.

## How a Cockpit Remembers its Speed

## Worth I0,000 Words?

## Informational Equivalence

## Informational Equivalence

 !=
## Computational Equivalence

