COGNITION AND DESIGN

Scott Klemmer and Michael Bernstein

Today: how user interfaces connect with cognitive strengths

- •Mental models
- Gulfs of evaluation and execution
- Direct manipulation
- Externalized cognition

Mental models

Consider this refrigerator...

problem: freezer too cold, but fresh food just right

Concept from: Don Norman, The Design of Everyday Things.

The refrigerator has two dials How does the system work? Normal Setting Colder Fresh Food **Coldest Fresh Food** Colder Freezer Warmer Fresh Food OFF (both)

- C and 4
- C and 5-6
- B and 7
- D and 6-7
- C and 3-1
- OFF (both) o

Α	В	С	D	E	
7	6	5	4	3	

A likely model... i.e., independent controls

Actual model Now can you fix the problem?

Mental model

- real world
- Incorrect mental model: two separate cooling units

·User's thought process about how something works in the

•Correct mental model: one dial controls the cooling unit, the other controls the ratio of cold air to fridge and freezer

Goal of design: instill the correct mental model

- If users have the correct understanding of a design, they can confidently take action
- •Users develop their model through interaction with the system
- •Designers begin with the correct mental model •Often, the user's model != the designer's model

Conceptual Model Mismatch

- Mismatch between design leads to...
 - Slow performance
 - Errors
 - Frustration

• Mismatch between designer's & user's conceptual models

analogical reasoning

- "A text processor is a typewriter"
- We have models (beliefs) about our own behavior, of others, of objects, software...
- Our models are incomplete, inconsistent, unstable in time, and often rife with superstition

Mental models arise from experience, metaphor, and

Slips

• Correct model but accidental execution

- e.g., trying to hit the save button but accidentally quitting
- e.g., accidentally shifting the car into Neutral

e.g., looking for a save button in Google Docs

• e.g., not using the clutch in a manual transmission car

Butterfly Ballot

Image Courtesy Wikipedia: http://en.wikipedia.org/wiki/File:Butterfly_large.jpg

OFFICIAL BALLOT, GENERAL ELECTION PALM BEACH COUNTY, FLORIDA NOVEMBER 7, 2000

€ 4	PAT BUCHANAN - PRESIDENT EZOLA FOSTER - VICE PRESIDENT		
	EZOLA FOSTER - VICE PRESIDENT		
	10001111071		
	(SOCIALIST)		
€ 6	DAVID MCREYNOLDS - PRESIDENT		
	MARY CAL HOLLIS - VICE PRESIDENT		
	CONSTITUTION)		
€ 8	HOWARD PHILLIPS - PRESIDENT		
	J. CURTIS FRAZIER - VICE PRESIDENT		
(V	VORKERS WORLD)		
€10	MONICA MOOREHEAD PRESIDEN		
	GLORIA La RIVA - VICE PRESIDENT		
WRITE			

To vote for a write-in candidate, follow the directions on the long stub of your ballot card.

Clear mapping between control + function

Image Courtesy Wikipedia: http://en.wikipedia.org/wiki/File:Gas_stove.jpg

Clear mapping between control + function

Example (good)

Mercedes S500 Car Seat Controller

Gulfs of execution and evaluation

How might we improve the measuring cup?

The Gulf of Execution: How do you do?

The Gulf of Execution: How do you do?

- How do I add more water to the measuring cup?
- How do I remove water?

The Gulf of Evaluation: How do you know?

The Gulf of Evaluation: How do you know?

• How much water is in the measuring cup now?

The making of gulfs. How easily can someone:

- Determine the function of the device?
- Tell what actions are possible?
- Determine mapping from intention to physical movement?
- Perform the action?
- Tell what state the system is in? / if it's in desired state? • Determine mapping from system state to interpretation

Questions from Don Norman, The Design of Everyday Things

To reduce the gulfs, provide...

- Visibility (perceived affordances or signifiers)
- Feedback
- Consistency (also known as standards) • Non-destructive operations (hence the importance of
- undo)
- Discoverability: All operations can be discovered by systematic exploration of menus
- Reliability. Operations should work. Period. And events should not happen randomly.

Courtesy Bill Moggridge, IDEO

26

Direct manipulation

Act directly on the object of interest indirect: Ai ∎∎▼ Stroke: 🔶 1 pt \mathbf{T} 🗕 Uniform 🔽 🔹 5 pt. Round 🔽 Opacity No Selection • • • Untitled-..... Image: A = 1 I

44

/ . 🔲 ⊿ 🖉

ି , 🗗

🗶 🔪

•r, 🗈

1 🖉 🔊

ш

°Ō,

i,

₩,

Pi |

r 🖵

Ú

								Es	sentials 🔸	Q	
100%	► Sty	/le:		ocument Se	etup	Preferences	- X				
1* @ 2009	% (CMY	K/Prev	iew)				<u>^</u>	olor	Color Guide	Kuler	
									color dulue	Kulci	
											_

R

Act directly on the object of interest

Direct manipulation

- Immediate feedback on actions
- Continuous representations of objects
- Leverage metaphor

ctions ons of objects

COMMAND LINE v. GUI

Command Line

Principle Visibility

Feedback

Consistency

Non-destructive

Discoverability

Reliability

Successful Indirection?

courtesy of Takeo Igarashi

"'If technology is to provide an advantage, the correspondence to the real world must break down at some point." - Jonathan Grudin

CURRENT PRACTICE

NEW TECHNOLOGY

minimize this distance

Final Scratch

Externalizing cognition

We need two volunteers. One stays, one goes outside.

Let's play number scrabble

- •Two players
- •Numbers available: 1, 2, 3, 4, 5, 6, 7, 8, 9
- Players draw alternately, without replacement
- •Win if three of your numbers add up to 15

4, 5, 6, 7, 8, 9 without replacement pers add up to 15

Let's play number scrabble

- •X takes 8
- O takes 2
- •X takes 4
- O takes 3
- •X takes 5

What should O do?

OK, go outside. Don't talk to your partner. We'll get them in a second.

Let's go get PlayerTwo.

Tic-Tac-Toe: You are Player O.

The Color Puzzle

goal Put all the colors in one bin rule I Only one color can be transferred at a time

can be put in empty or or can be put in empty or or or or

- rule 2 Colors can only be moved if certain properties hold:
 - can only be put in an empty bin
 - can be put in empty bins or bins with

The Towers of Hanoi Puzzle

goal Put all the rings on one peg
rule 1 Only one ring can be transferred at a time
rule 2 A ring can only be transferred to a peg on which it will be the smallest
rule 3 Only the smallest ring on a peg can be transferred to another peg

Anscombe's Quartet

SetA		Se	t B	Se	t C	Se	Set D		
X	Υ	X	Y	Χ	Υ	X	Υ		
10	8.04	10	9.14	10	7.46	8	6.58		
8	6.95	8	8.14	8	6.77	8	5.76		
13	7.58	13	8.74	13	12.74	8	7.71		
9	8.81	9	8.77	9	7.11	8	8.84		
11	8.33	11	9.26	11	7.81	8	8.47		
14	9.96	14	8.1	14	8.84	8	7.04		
6	7.24	6	6.13	6	6.08	8	5.25		
4	4.26	4	3.1	4	5.39	19	12.5		
12	10.84	12	9.11	12	8.15	8	5.56		
7	4.82	7	7.26	7	6.42	8	7.91		
5	5.68	5	4.74	5	5.73	8	6.89		

Summary Statistics $u_X = 9.0 \sigma_X = 3.317$ $u_{\rm Y}$ = 7.5 $\sigma_{\rm Y}$ = 2.03

Linear Regression Y = 3 + 0.5 X $R^2 = 0.67$

[Anscombe 73]

courtesy of Jeff Heer

[Anscombe 73]

Problem Solving as Representation

"Solving a problem simply means transparent"

representing it so as to make the solution

—Herbert Simon, The Sciences of the Artificial

Naturalness Principle

 Experiential cognition is aided when the properties of the **representation** match the properties of the thing being represented

Offloading Working Memory

e.g., Getting Things Done

Proteus Ingestable Networked Pill

 Sensor and transmitter encapsulates pill • Stomach acid is part of battery • Transmits pill --> patch --> iPhone --> Internet

Offloading Computation

When interfaces help people distribute cognition, it can...

- Encourage experimentation
- Scaffold learning and reduce errors through redundancy
- Show (only) differences that matter Convert slow calculation into fast perception
- Support chunking, especially by experts
- Increase efficiency
- Facilitate collaboration

external feedback: cheap experimentation

Kirsh and Maglio

London Underground

Color: Edward Tufte

Color: Edward Tufte

Chase and Simon, 1973: Experts learn to "chunk" visual stimuli

Chase and Simon, 1973: Experts learn to "chunk" visual stimuli

Experts

Actual game

90%

Random game

25%

Novices

25%

25%

Chunking in Interfaces

Ideally, ଐକ୍ want a one-to-one mapping between concepts and gestures. User interfaces should be designed with a clear objective of the mental m<u>odel</u> we are trying to establish/Phrasing can reinforce) The chunks or structure of the model.

How a Cockpit Remembers its Speed

Ed Hutchins

Worth 10,000 Words?

Jill H. Larkin, Herbert A. Simon, Why a Diagram is (Sometimes) Worth Ten Thousand Words

Informational Equivalence

Jill H. Larkin, Herbert A. Simon, Why a Diagram is (Sometimes) Worth Ten Thousand Words

Informational Equivalence

Computational Equivalence

Jill H. Larkin, Herbert A. Simon, Why a Diagram is (Sometimes) Worth Ten Thousand Words