nput

Scott Klemmer

HCI Design. with materials from Bjoern Hartmann, Stu Card, Pat Hanrahan

Quiz 4

- Do not start until instructed
- I0 minutes (timer below)
- · Loose piece of paper is for after the quiz

ucted w) for after the quiz

Fitts' Law Exercise

A7 Examples

Shuming Cao, Changtong Qiu, Xinyuan Zhang

interMeet
Code
First name
Last name
Indexession
NEW MEETING? CREATE

Braxton Fitts, Dennis Ku, Todd Tang

community

keep updated with the newest gear

Go To Community Page

Input

- How do these devices work for getting information into the computer?
- Some Frameworks:
 - How do input devices effect the nature of the interaction?
 - What's coming next?

Top conductive layer

Bottom conductive layer

Separating layer (with hole)

Top conductive layer

Bottom conductive layer

9 lines 20 keys

Closeup

Keys → Scan Codes

Make (onPress) and Break (onRelease) codes

http://www.computer-engineering.org/ps2keyboard/

CS148 Lecture 5

Pat Hanrahan, Fall 2011

Keys (Scan Codes) != Special keys - interpreted by the OS or

- App
 - FI, ..., FI2
 - Insert, Delete, Home, ...
- Duplicated keys
 - Numbers on keypad vs. keyboard
 - · Left-shift, Right-shift, Left-cmd, Right-cmd

Layered Model of Input

Keyboard G 59h 34h F0h 59h F0h 59h F0h F12 b7a2 b1a6 SHIFT g

But we can do much better

The real problem: ASYMMETRY OF OUTPUT TO INPUT Typewriter limits input speed (and expressibility)

Whirlwind (MIT, 1951)

Big Idea: INPUT ON OUTPUT

Input on Output

SAGE

I.C.R.LICKLIDER

HUMAN-MACHINE SYMBIOSIS:

"The hope is that in not too many years, human brains and computing machines will be coupled together very tightly, and that the resulting partnership will think as no human brain ever thought."

Graphical Direct Manipulation SKETCHPAD (1963)

TX-2 (MIT, 1959)

- Direct Manipulation
- Tiled windows
- File icons
- Menus

Changing visual element part of interaction loop

Lightpen

Point and Click, Hypertext

NLS (SRI, 1968)

Clickable Text

- Mouse
- Point & Click editing
- Hypertext
- Rapid interaction
- Text/graphic integration

Video

Command Chordset

Mouse

The Mouse: Small, Cheap, Fast, Small Targets

(cc) Flickr user John Chuang http://www.flickr.com/photos/13184584@N08/1362760884/

Graphical UI, Windows

- Digital Mouse
- Ball mouse
- Bitmapped CRT
- Overlapped windows
- Desktop metaphor
- Object-oriented UI
- Pull-down menus
- Cut & Paste
- Icons
- •Typography

Independent information

Alto (Xerox, 1974)

Smalltalk (Xerox, 1976)

User View . status
Wednesday October 12, 1972 10:54 am 1314 disk pages
Class new ricks Subclassof W fields: 'docum asfollows! User events are window is active. Scivillar and ma gain control. Event Respo enter (set) show curiverus show leave (document)
edutisterus hid. outside [etisterini sta scrollfor score infilise] pendown [d. the scrobard [d. the scrobard [d. the
Image show [supt showDoc (dictime) clube [0.16-1]

	UDET VIEW . WORKSTOR 2
77	XEROX - Searching Manager Green
5	screen restore Smalltalk quit Changes
155.	Files Fonts
e 'DocWindow'; Vindow; nent scroll&ar edicMen	Classes Messages Hardcopy
passed on to the doc 6. If the stylus goes out 6 aastManu are each go	of the window,
Onses v. ow. scrollBar show) it hadeselection. k. scrollBar hide)	u on the display. It utside, while it hold; id user actions.
artups[] rups[sel[\$808-C-se]	
ment pendown) ment keubaird S	

Right button

Encoder wheel for scrolling

Left button

slotted wheel IR emitter (between emitter & detector)

High

Low

Solution: Use two out-of-phase

Low

Coding: HH-> LH: dx = 1 HH-> HL: dx = -1

47

Transformation

 $cx_t = max(0, min(sw, cx_{t-1}+dx^*cd))$ $cy_t = ...$

cx_t: cursor x position in screen coordinates at time t dx: mouse x movement delta in mouse coordinates sw: screen width cd: control-display ratio

, (dx,dy)

Optical Mouse

Layered Model of Input

CS148 Lecture 5

Pat Hanrahan, Fall 2011

What about optical mice?

Lucasa Chan dudu — "	lmouse	a, Readm	🖷 Rea
		Port:	
TIN ANG ARAHI = III ANG ITONT > III			

Source: http://spritesmods.com/?art=mouseeye

					_	
Sca	an mo	de				
			_	_		

A design space of input

Table I. Physical Properties Used by Input Devices

Linear
Position \mathbf{P}
Movement dP
Force F
Delta force \mathbf{dF}

Card, S. K., Mackinlay, J. D., and Robertson, G. G. 1991. A morphological analysis of the design space of input devices.

Rotary

Rotation **R** Delta rotation **dR**

Torque T
Delta torque \mathbf{dT}

How about People? Can we mode human performance?

Principles of Operation

- Fitts' Law
 - Time Tpos to move the hand to target size S which is distance D away is given by: \cdot Tpos = a + b log2 (Distance/Size + 1) • The log part is the "index of difficulty" of the target;

 - it's units are bits
 - summary
 - time to move the hand depends only on the relative precision required

What does Fitts' law really model?

Velocity

It was inspired by information theory

- It treats acquiring a target as specifying a number of bits
- i.e., in the Fitts' worldview, the human motor system is a noisy information channel
- Smaller target? More bits
- Further target? More bits

Experiment Repeated Tapping

EXPERIMENT: MICEARE 5 STEP KEYS 4 Positioning Time (sec) 3 TEXT KEYS 2 JOYSTICK MOUSE 01 8 10 2 16 4 6 Distance (cm)

Fitts' Law for Eight Devices

log(A/W + 1)

Why these results?

Time to position mouse proportional to Fitts' Index of Difficulty I_D.

Proportionality constant = 10 bits/ sec, same as hand.

Therefore speed limit is in the eye-hand system, not the mouse.

Therefore, mouse is a near optimal device.

50 years of data

Device	Study	IP (bits/s)
Hand	Fitts (1954)	10.6
Mouse	Card, English, & Burr (1978)	10.4
Joystick	Card, English, & Burr (1978)	5.0
Trackball	Epps (1986)	2.9
Touchpad	Epps (1986)	1.6
Eyetracker	Ware & Mikaelian (1987)	13.7
Reference:	T F 1 1	

MacKenzie, I. Fitts' Law as a research and design tool in human computer interaction. Human Computer Interaction, 1992, Vol. 7, pp. 91-139

EXAMPLE: ALTERNATIVE DEVICES

Headmouse: No chance to win

ATTACHING POINTING

Use transducer on high bandwidth muscles

Faster Input: Menu Selection

Faster Input: Menu Selection

Pop-up Linear Menu

Today	
Sunday	
Monday	
Tuesday	
Wednesday	
Thursday	
Friday	
Saturday	

Try to hit a target without • You can open your eyes after each step Then, try it for both a mac-style and windows-style menu bar

EXAMPLE: BEATING THE MOUSE

Use transducer on high bandwidth muscles

TIME (msec)

What else might we have measured?

- Time on Task -- How long does it take people to complete basic tasks? (For example, find something to buy, create a new account, and order the item.)
- Accuracy -- How many mistakes did people make? (And were they fatal or recoverable with the right information?)
- Recall -- How much does the person remember afterwards or after periods of non-use?
- Emotional Response -- How does the person feel about the tasks completed? (Confident? Stressed? Would the user recommend this system to a friend?)

New Innovation Cycle for

- Driven by
 - Small Devices
 - Big screens
 - New technologies

10/25/10

Radius from PolymerVision

INALINATE INTA

CONTRACTOR DEFINITION DEFINITION DEFINITION CONTRACTOR CONTRA

HALL COMMON

Anisotrony the body agent convertion hands attacted only with a R K-3P and Reservation times for proceedings for body and for

orthogon against plan hairin bha Marainn againt plan hairin bha Marainn agus bharrainn an an an an

(Notes of Section)

unersy and understalling

TRADI TO PER LONDA & STORE AND

OPTIONS

Nokia concept phone by Hugo Danti

10/25/10

SNAKE--Product Visionaries

10/25/10

New Input Devices Using INPUT ON OUTPUT

10/25/

courtesy Amazon.com

Baudisch et al., NanoTouch

ShapeWriter

d	k	g			
а	n	/ʃŗi	tim	g	
1	0	s	у	х	
h	t/	0	р	۷	
ini	4	u	W	z	

Zhai (IBM, ShapeWriter)

ShapeWriter With Optimized Key Arrangements (ATOMIK)

Share	🕊 ShapeWriter [U.S. English]													
1														
TODIR	ECTMO	DE								-				
~ ` @ ^	b	d	k	g		,	?	ļ	1	{	}			
-	с	а	n	i	m	q	-	Esc	\$ 4	[5] 6			
$\langle \rangle$	f	1	е	s	у	х	-	Send	#_7	< 8	> 9			
Caps	j	h	t	0	р	V	Space	;/:	0	Fn	* / &			
分	Alt	Ctrl	r	w	u	z	'-	Menu	+	= %	↑ \ ↓			

ShapeWriter Performance, first 40

- Error rate ~ 1%
- Average speed already > long term Graffiti and others.
- •QWERTY faster at first, ATOMIK faster in long run.
- Experienced users can reach over <u>100 words/min</u> Shumin Zhai (IBM, Shape)

ng term Graffiti and others. MIK faster in long run. h over <u>100 words/min</u> Shumin Zhai (IBM, ShapeWriter, Inc))

Big Idea: INPUT ON CONTEXT

INPUT ON CONTEXT

- Typewriter: >Find pizza in 94304 ==> Places for pizza near 94304 [1] California Pizza Kitchen [2] Round Table Pizza Menlo Park >Select []]
- Input on Output: >Find pizza in 94304 <click>
- Input on Context (GPS): > Pizza!
- <click>

Suunto Watch

 Altitude • Heart rate • Calories consumed • Lap time • Lap number Accumulated oxygen deficit • Ambient temperature

Skinput: Using body surfaces

Harrison, Tan, Morris (2010)

Skinput Tetris

Proteus Ingestable

Sensor and transmitter encapsulates pill

• Stomach acid is part of battery

 Transmits pill --> patch --> iPhone --> Internet

Some Summary Points

- Input devices are more than just peripherals. They enable classes of dialogues of information.
- Communication is asymmetric to humans: highbandwidth in, slow bandwidth out.
- Input-on-output enables complex objects and dialogs.
- Input-on-context enables even more complex dialogs.
- Rapid evolution of input devices is expected in the immediate future.

Quiz Scores

This week's assignment

- Develop a protocol
- Observe users using your prototype
- Compile and analyze results
- Come up with a redesign for A/B testing

our prototype esults on for A/B testing

Extra Credit

- Due Sunday, March 13 at 11:59pm
 - Revisit inspiration
 - Publicize your app
 - Create a video