
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

MOBILE AND UBIQUITOUS SYSTEMS
www.computer.org/pervasive

Hacking, Mashing, Gluing:
Understanding Opportunistic Design

Björn Hartmann, Scott Doorley, and Scott R. Klemmer

Vol. 7, No. 3
July–September 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

46 PERVASIVE computing Published by the IEEE CS ■ 1536-1268/08/$25.00 © 2008 IEEE

T H E H A C K I N G T R A D I T I O N

Hacking, Mashing, Gluing:

Understanding
Opportunistic Design

Björn Hartmann, Scott Doorley,
and Scott R. Klemmer
Stanford University

Learn about principles of opportunistic design through an interview
study of 14 professional and hobbyist “mashers” from three design
disciplines: Web 2.0, hardware, and ubiquitous computing.

O pportunistic practices in interac-
tive system design include copy-
ing and pasting source code
from public online forums into
your own scripts, taking apart

consumer electronics and appropriating their
components for design prototypes, and “Frank-
ensteining” hardware and software artifacts
by joining them with duct tape and glue code.
We consider these opportunistic practices part
of mashup design. Although many ubiquitous
computing practitioners have engaged in these
practices, design tools and software engineering
research don’t traditionally address them.

Mashup design’s ad hoc nature might be an-
tithetical to classical software
engineering methods, but it
can have a signifi cant impact.
For example, Eric von Hippel
chronicles the importance of
end-user innovation in fuel-
ing commercial product de-

velopment in this issue (p. 66) and elsewhere.1
Because hobbyists and amateurs often under-
take opportunistic design, it relates to end-user
programming.2,3 Even professionals engage in
opportunistic practice when speed and ease of
development are valued over robustness and
maintainability.4 We aimed to understand how
mashup design of software and hardware takes
place today to derive goals for better design
tools in the future.

In this article, we introduce a framework that

situates opportunistic design for ubiquitous
computing at the intersection of three existing
hacking traditions and distinguishes between
deep and surface-level approaches for integrat-
ing components. We interviewed 14 professional
and amateur “mashers” from three design disci-
plines: Web 2.0, hardware, and interactive ubiq-
uitous computing. This interview study revealed
how designers choose between integration lev-
els; how mashups provide epistemic, pragmatic,
and intrinsic values for their creators; and how
shopping becomes a central activity.

Ubicomp mashups
In our view, mashups consist of recombination
and ad hoc design across boundaries of bits and
atoms. This broad perspective builds on previ-
ous concepts of mashups in computer science and
music. Mashups originated in music, where the
term denotes the practice of taking elements of
two or more existing songs and creating a new
piece by rearranging, interspersing, and superim-
posing parts of these sources. Computer science
later adopted the term to refer to applications
created by programming against one or more
public Web APIs, also known as infrastructure
services.5 We’re most interested in the nascent
area of ubiquitous computing mashups. Ubi-
comp mashups attempt to move computation off
the desktop and integrate it with the artifacts of
everyday life.6 They extend beyond the Web and
combine the functionality of both software and
hardware components.

JULY–SEPTEMBER 2008 PERVASIVE computing 47

A framework
of mashup components
Moving from the physical to the digi-
tal domain, a ubicomp mashup can use
four types of components (see Figure
1). First, a mashup can contain built or
repurposed mechanisms, such as a toy
doll’s movement mechanism. Second,
sensors and actuators can interface with
these mechanisms and other physical
phenomena; electronics such as embed-
ded programmable microcontrollers
provide the logic for sensors and actua-
tors. Third, designers can write their
own programs or leverage off-the-shelf
software on their personal computers
(be it a desktop, PDA, or smart phone).
Local applications might offer hooks for
programmatic automation through APIs
or built-in scripting languages. Fourth,
mashups can use Web infrastructure ser-
vices such as search and mapping APIs.

Each of these four components has
a history of opportunistic design prac-
tice (see Figure 2). Shell scripts and
application macros have long func-
tioned as glue between desktop appli-
cations. John Ousterhout provides a
good overview of scripting languages’
advantages for connecting preexisting
software components.7 Bonnie Nardi’s
account of end-user programming de-
scribes tool-independent practices such
as programming by example modifi ca-
tion.8 In the tangible world of mecha-
nisms and electronics, amateurs as
well as professional product designers
cannibalize or repurpose off-the-shelf
products to fi t new needs. Hardware
hacking has seen a recent resurgence in
popularity with hobbyists, evidenced
by the success of publications such as
Make magazine (www.makezine.com).
The advent of open APIs for Web ser-
vices has spurred development of nu-
merous services and sites that aggregate
disparate data sets. The Web API cata-

log programmableweb.com lists 3,109
Web mashups leveraging 775 distinct
APIs as of June 2008.

Integration strategies:
Dovetail joints versus hot glue
A broad shift that the mashup para-
digm introduced is the reallocation
of the designer’s effort and creativity.
More time and ingenuity go to select-

ing components and shaping the “glue-
ware” that interfaces them.

We distinguish between two ap-
proaches to glue. In the fi rst, two com-
ponents explicitly support combination
through a shared interface. They’re
aware of each other, allowing for tight
integration. We use the carpenter’s
dovetail joint metaphor to label these
deep combinations. Dovetail joints are

Web
infrastructure

services
(remote code)

Electronics
hardware

Mechanisms and
physical phenomena

Off-the-shelf
software

(local code)

Web 2.0 mashups

Ubicomp mashups

Hardware hacks

(a) (b)

Figure 1. Ubicomp systems ingredients.
(a) Four components of a ubicomp
mashup. (b) Ubicomp mashups unite
hardware and Web practices.

Hardware

Software

Electronics

Mechanisms

Web APIs and
services

Local (desktop)
applications

Hardware hacking,
do-it-yourself
electronics

Ubicomp
mashups

Web 2.0
mashups

Macros and
shell

scripts

Ha
rd

w
ar

e

So
ftw

ar
e

El
ec

tro
ni

cs

M
ec

ha
ni

sm
s

W
eb

 A
PI

s
an

d
se

rv
ic

es

Lo
ca

l (
de

sk
to

p)
ap

pl
ic

at
io

ns

Figure 2. A classifi cation of mashups based on their components. The arrows
indicate how existing communities and practices inform ubicomp mashups.

48 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

documented extension and integration
points in the system architecture—APIs
in software, breakout headers and con-
nectors in electronics, and mounting
holes in hardware.

In contrast, hot glue combinations
adjoin components that are either in-
compatible, don’t know about each
other, or don’t support each other. You
can apply hot glue to almost anything,
but it has limited adhesive power—all
it can offer is shallow, surface-level in-
tegration. Screen scraping—parsing
rendered user interfaces such as Web
pages to gather data—and screen pok-
ing—generating synthetic mouse and
keyboard events computationally—are
examples of digital hot glue joints. Im-

portantly, a designer’s intent is often
hidden in such glue code: what is re-
corded is only a trace of the taken ac-
tions (for example, a sequence of mouse
clicks), but not their semantics (such as
opening a particular fi le).

In practice, most systems, whether
software or hardware, are constructed
from preexisting components—code
libraries, integrated circuits, and me-
chanical subassemblies. This raises the
question of whether there’s a dividing
line between component-based engi-
neering and mashup practice.

One distinguishing characteristic
might be the degree to which systems
rely on dovetail and hot glue joints to op-
erate. Where engineering methods strive

to cleanly integrate dovetails, mashups
often use both dovetail and hot glue con-
nections simultaneously. In mashup de-
sign, component selection is informed,
but not dictated, by the availability of a
suitable interface. If a clean integration
interface is available, the practitioner
will use it; if not, the practitioner will
resort to more brittle workarounds.

Furthermore, because component
vendors don’t sanction hot glue joints
and appropriations, the source of au-
thoritative information and support
shifts away from vendors and manu-
facturers and toward the community
of mashup designers.

We were curious to what extent inte-
gration practices are shared by mashup

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Participants’ mashups. Samples include applications for (a) planning an evening out, (b) plotting weather forecasts
on a map, and (c) fi nding train schedules. Participants (d) created a combination toy and fl ashlight and (e) a fl ying toy car,
(f) listened to audio in noisy environments, (g) developed an application for annotating printed documents with video,
(h) developed an indoor positioning prototype for smart shopping carts, and (i) built audio art installations.

JULY–SEPTEMBER 2008 PERVASIVE computing 49

designers across hardware and software
domains. We also wanted to know to
what extent current domain-specifi c
tools are appropriate to support ubi-
comp mashups. We approached these
questions through an exploratory inter-
view study.

Interview methodology
We interviewed 14 practitioners from
three areas of mashup design. Four
participants were involved in Web
2.0 development. Four others focused
on hardware hacking—working with
mechanisms and embedded electron-
ics. Six participants worked as ubi-
comp designers—creators of interactive
computing systems spanning hardware
and software components. In our inter-
views, we asked participants to describe
their work philosophy and general ap-
proach to problem solving, and then to
focus on one particular recent project.
To ground and structure the discus-
sion, we asked participants to produce
artifacts or visual representations (pho-
tographs or sketches) of their project.
Specifi cally, we asked participants to
describe third-party components they
integrated, how they decided to include
particular parts, and the trade-offs and
challenges they experienced.

Sampling mashups:
Who, what, why
Here we review the material collected:
who our participants are, what kinds
of systems they build, and how and
why they build them. For brevity, we
only mention a subset of the interview-
ees and focus on commonalities within
groups.

Web 2.0 programmers
Our participants were professional
programmers or Web developers who
didn’t feel that mashup programming’s
technical aspects were a hurdle.

Our fi rst participant, W1, owns a cell-
phone software company. In his spare
time, he developed a mashup Web site
that overlays restaurant and bar infor-
mation on an interactive map (see Figure

3a). Users build a graphical path from
one venue to the next to plan an evening
out with friends. They can also send these
paths to a compatible mobile phone. This
mashup combines three online services:
CitySearch for entertainment reviews,
Google Maps for mapping and naviga-
tion on the desktop, and Yahoo! Maps
for mapping on mobile devices.

A second mashup, written by partici-
pant W2, also builds on Google maps.
His Web site features georeferenced
weather forecasts and temperature
readings, integrated displays of user-
contributed webcam feeds, and weather
histories. His application aggregates
forecasts from more than a dozen na-
tional and regional weather data pro-
viders and locates these forecasts on a
map (see Figure 3b). The site is generat-
ing enough traffi c—and ad revenue—
that he is contemplating making this
side project his full-time job.

Aiming at the emerging mobile ap-
plication market, participants W3 and
W4 built a mashup that delivers relevant
train schedules for three US commuter
rail systems to mobile phones through
SMS or email (see Figure 3c). Users send
a short message with a station name ab-
breviation to their system, which replies
with upcoming train times. The system
links an SMS email gateway to a sched-
ule database gathered from the individ-
ual rail companies.

Screen scraping vs. Web APIs. One major
concern for our Web 2.0 participants is
access to and strategies for getting data:
“Getting the data is the absolute hard-
est part” (W3). The surveyed mashups
derived their value from integrating
disparate data sets in ways not previ-
ously possible. Although two of the
three projects used Google Maps’ open,
documented infrastructure service, all
three projects resorted to screen scrap-
ing (parsing) to gather at least part of
their data. Participants gave two pri-
mary reasons for scraping:

APIs simply weren’t available for ob-
taining the desired data, and

•

Web APIs are generally designed
for smaller data requests, so it’s still
easier to obtain large data sets by
scraping.

W2 reported building his own scrap-
ing toolkit so it now takes him as much
time to develop a scraper as it would to
integrate an available API.

Business models and obstacles. All par-
ticipants reported that their mashups
started as side projects to their full-
time jobs as consultants, business own-
ers, and developers. However, two of
the three projects expressed interest in
turning the mashup into a profi table
business. With Web mashups, shifting
from the personal sphere to the com-
mercial sphere can be challenging for
both legal and technical reasons. W1
reported that making money by using
scraped content is problematic because
of licensing restrictions. W2 reported
that he had to add redundant data
sources because individual weather pro-
viders could alter the format or with-
draw their data streams at any time.

Hardware hackers
In the physical and electronic design
realms, we interviewed three toy in-
ventors at two design companies and
a hobbyist who refashions consumer
goods into personalized tools and pub-
lishes instructions for creating these
tools online. The toy inventors build
prototypes that illustrate new interac-
tion design concepts. They don’t create
fi nished products. Project schedules are
very short, ranging from two days to
less than a month.

When we visited participant H1, she
was working on a toy that functioned
as a fl ashlight with sound effects. To
make the concept tangible, she bought a
pair of plastic monkeys from a local toy
store because the monkeys had a similar
opening mechanism to the one she envi-
sioned (see Figure 3d). She then embed-
ded a tactile switch into the mechanism’s
lever to trigger light and sound effects
using external electronics. A previous

•

50 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

project prototype combined a toy car
body with plastic rocket engines from a
model plane kit to create a new fl ying car
(see Figure 3e). To her, the aesthetics (the
“toyness”) of the repurposed packaging
mattered, even though the fi nal product
would have a radically different look.

At the second toy company, partici-
pants H2 and H3 described how they
prototyped a handheld wireless con-
troller for a TV game. They took the
controller’s barrel from a soda bottle,
and they built the grip from a Gyra-
tion wireless mouse that uses a gyro-
scope to sense tilt, transforming that
tilt data into cursor movement. A cus-
tom-made plastic mold joined the two
pieces into one unit using custom-made
plastic molds. They then used the wire-
less mouse’s cursor and click events to
animate graphics on a laptop (used as
a stand-in for a television set) running
Adobe Flash.

In contrast to the toy designers’
rough-and-ready prototypes, partici-
pant H4 builds his hardware-based
mashups for long-term private use.
Many of the artifacts he uses daily
were created by modifying consumer
goods. One project he created was a
pair of jackhammer hearing-protection
earmuffs that he retrofi tted with a pair
of airline headphones to listen to audio
books in noisy environments (see Fig-
ure 3f). According to H4, this design
offers better noise reduction than com-
mercial noise-canceling headphones
and is signifi cantly cheaper.

For all three toy inventors, visiting
large retail stores to purchase interest-
ing new toys was an integral part of
their core practice. They would later
disassemble these toys in their shop. We
identifi ed three strategies of appropriat-
ing store-bought toys:

Designers extract mechanisms and
reuse them in different skins (for
example, H2 and H3 transferred a
purchased toy’s animated movement
into a new prototype).
Designers keep a toy’s shell but em-
bed new electronics into it (H1 did

•

•

this “because it immediately looks
like a toy”).
Designers fuse different shells (such
as H1’s metal toy car with air plane
rocket engines) to produce a compos-
ite object.

While many Web mashups build on
a few high-value components, such as
Google Maps, our hardware hackers’
choices didn’t cluster around high-
value products. To the contrary, within
a given genre the toy designers collected
a wide variety of products in their stor-
age bins for later reuse.

In contrast to the toy designers, H4
saw the tailoring of existing artifacts as
a partial rejection of consumer culture.
The self-suffi ciency of “do it yourself”
offers a degree of intrinsic satisfaction
along with a level of personalization and
novelty unavailable in mass-produced
artifacts. For H4, the economies of scale
that mass-produced consumer goods le-
verage are incentives. Picking existing
parts is cheap: “It’s never cheaper to
start from scratch to make your own.”

Ubicomp designers
Our six ubicomp developers used mash-
ups as prototypes and proof-of-concept
deliverables, but also as a way to design
and implement site-specifi c tools for a
single user or a small community.

Participant U1, a design researcher,
worked on a system for design teams
to annotate printed documents with
short video messages. In his functional
prototype (see Figure 3g), users push a
button to initiate video message record-
ing on a laptop. After recording, the
system prints a small label displaying a
snapshot of the video and a bar code.
The user attaches this bar code to the
document described in the video. If an-
other user wants to access the video, she
waves the bar code in front of the same
camera, upon which the system retrieves
and plays back the desired video. U1 re-
lied heavily on commercial off-the-shelf
software, combining fi ve different ap-
plications through AppleScript. For ex-
ample, he scripted QuickTime to record

•

and play back video, and he used the
Excel spreadsheet software as a data-
base. To convey this project’s complex-
ity, Figure 4 shows our redrawn version
of his system architecture sketch.

Participant U2, an industrial re-
searcher, described a project where he
designed an indoor positioning proto-
type for smart shopping carts. This po-
sitioning system employed computer vi-
sion. To test the vision data quality, U2
attached a custom-built optical rotation
sensor to a shopping cart’s wheel and
soldered its contacts to the left button of
a gutted PC mouse, so that each revolu-
tion yielded one click (see Figure 3h). By
counting the total number of clicks on
the PC, he received ground truth data
about the total distance the cart had
traveled. (For more information, also
see “Hacking in Industrial Research
and Development” in this issue.)

U3 has been developing his own musi-
cal programming language and graphi-
cal environment for producing and
performing electronic music. He builds
audio installations that he shows at the
annual Burning Man festival (see Figure
3i). Although he spent years designing
his software from the ground up, the
physical controllers he used were off-the-
shelf game console input devices such as
“Dance Pad” fl oor mats. According to
him, “you can choose what level of ef-
fort you want to put in—you can buy the
next level of integration.” To him, a key
component enabling his installation was
a small hardware converter that lets him
connect controllers built for proprietary
game consoles to a PC USB port.

As Web 2.0 programmers employ
screen scraping to harvest informa-
tion from online databases, ubicomp
programmers use screen poking to re-
motely control software. In addition to
U2’s appropriation of a mouse button
for measuring turns of a wheel, U1 ini-
tially used the macro software Automate
as a means to control desktop applica-
tions by computationally injecting syn-
thetic mouse and keyboard events. U3
purchased a hardware converter that
transformed the output of pressure-

JULY–SEPTEMBER 2008 PERVASIVE computing 51

sensing dance pads into Windows plat-
form game controller events. U3 chose
these glueware techniques for simi-
lar reasons as screen scraping: APIs
are sometime unavailable, don’t yield
the desired information, or are more
time-consuming than surface-level
instrumentation.

Screen scraping can also be inter-
preted as an act of sensing, while screen
poking in turn is analogous to actua-
tion. As sensing the physical world yields
ambiguous, noisy data that must be con-
ditioned and fi ltered, data from screen
scraping often has to be cleaned and
processed. This suggests that mediation
techniques for ambiguous sensor input9
might transfer to Web scraping, and vice
versa. Despite the analogies, there are
barriers in crossing the chasm between
Web-centric applications and the physi-
cal realms of sensing and actuation.
One reason is that client-side Web tech-
nologies have increasingly moved into

secure-execution sandboxes that can’t
communicate directly with external
hardware. We still need design tool sup-
port for bridging these two domains to
enable experimentation by lead users.

Themes in opportunistic
programming
Our interviews uncovered some com-
mon concerns across the three design
domains. Choosing between levels of
integration, shopping, and connect-
ing to larger communities of mashup
designers emerged as unifying themes,
among others.

Dovetail joints versus
hot glue revisited
Across domains, our interviewees freely
mixed deep and surface-level integra-
tion techniques in their projects. Each
choice has important limitations: while
shallow hot glue is brittle, deeper inte-
gration might have limited reach. These

trade-offs are exemplifi ed by U1’s expe-
rience. He scripted an earlier version of
his document annotation system using
software that lets users record interac-
tion with GUI widgets and replay those
actions programmatically. Although
this system succeeded as an experience
prototype, it wasn’t robust enough for
any unsupervised deployment. Seeking
to improve on stability, U1 then switched
to AppleScript, which let him leverage
application-specifi c APIs. Although the
deeper glue that AppleScript provides is
signifi cantly cleaner for expressing logic
than GUI events, U1 found no program-
matic means within AppleScript for up-
loading the video clips to an online me-
dia-sharing site, a task that his previous
strategy could accomplish.

Beyond the technical consider-
ation of how to adjoin components is
a larger question about the relation-
ship between the designed intent of
the constitutive elements and that of

Excel

looks up ID XLS file

launchesGriffin
PowerMate

iSight

Proxi

iSight

Evo
Barcode

Record
AppleScript

Reuse
AppleScript

launches

writes

Label printer

Quicktime

DymoPrint

starts playback Quicktime

Video

Own code

COTS

Physical I/O

File I/O

Screenshot
(JPG)

pulls
snapshot

generates
doc

detects barcode

returns IDlaunches

retrieves video

Figure 4. System diagram of U1’s project. The project enabled designers to annotate printed documents with video messages.

52 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

the resulting mashup. Mashups might
appropriate technologies, repurposing
them as building blocks toward a goal
at odds with their original design.

One suitable defi nition of appropria-
tion is “the extent to which a violation
of a technology’s intended purpose oc-
curs.”10 This violation is easy to see
in toy hacking: toys were intended for
children to play with, not for design-
ers to take apart. Similarly, in the digi-
tal realm, screen scraping appropriates
output intended for human consump-
tion as program input. In contrast, us-
ing Web 2.0 APIs such as Google Maps
isn’t an act of appropriation because the
API’s providers give explicit permission
to use the service in new contexts.

It’s notable that in the Web 2.0 space,
where the general trend has been to open
up infrastructure services to allow reuse
without appropriation, all of our par-
ticipants still resorted to screen scraping
techniques. There are valid business rea-
sons not to make all company data avail-
able for automatic processing by others
through APIs. Simultaneously, those
same business reasons make capturing
the data valuable for third parties. We
conclude that support for both tight and
loose coupling (dovetail joints and hot
glue) will be inevitable for design tools.
Opportunistic design is based on inte-
grating existing artifacts that best fulfi ll
a functional or informational need, re-
gardless of their programming interface
or licensing agreement.

Mashing as a design activity
Next, we consider the activity of creat-
ing mashups: when, how, and why is
mashing preferable to other design and
development approaches? What value
do practitioners derive from it?

Short timelines, small audiences?
Mashup design in the physical world
tends to happen on short timelines—
the mashups we encountered were built
quickly, and many were discarded just
as quickly afterwards. By necessity,
the artifacts were intended for small
audiences; physical mashups are one-

offs that can’t be duplicated easily. The
emphasis on speed is a good match for
designers who want to rapidly proto-
type multiple ideas, consultants oper-
ating on compressed project schedules,
and hobbyists with limited leisure time.
Similarly, for these constituencies, the
audience of a user’s mashup is small: the
design team, a single client, or oneself.

The Web mashups we encountered
have different traits: they operate con-
tinuously, and their success is measured
in the number of users they attract.
Thus, engineering for robustness, re-
dundancy, and maintenance becomes
important—in this respect, building
Web mashups more closely resembles
traditional software engineering. This
difference could be an artifact of our
small survey population, but Web appli-
cations offer the unique opportunity to
reach larger audiences without reengi-
neering from the ground up: the proto-
type is the product. This opportunity to
scale could lead Web developers to con-
template robustness from the outset.

Although it’s certainly fast to get ap-
plications up and running by appropri-
ating existing technology, completing
the “last mile”—fi ne-tuning applica-
tion logic and interaction design—can
be diffi cult as desired functionality and
offered features of existing components
diverge. On the other hand, building
with lower-level blocks, or even from
scratch, incurs a large initial cost be-
cause developers must write their own
tooling. In exchange, they preserve fl ex-
ibility and can leverage their own tools
later in the project cycle. The sweet spot
for rapid, disposable mashups that our
interviews found is consistent with this
analysis. It also suggests an opportu-
nity for design tools that leverage op-
portunistic development early on while
preserving fl exibility or offering some
level of guaranteed robustness.

Epistemic, pragmatic, and intrinsic values.
We found that mashups provided both
pragmatic and epistemic value to our
participants. An artifact is pragmatic to
the extent that it enables actual use, and

it’s epistemic to the extent that it serves
as a locus of communication with other
stakeholders—clients, team members,
and users—and provides information
that can drive future design.11,12 For
some participants, creating mashups
also held intrinsic value generated by the
activity itself, rather than the utilitarian
or educational value of the outcome.

Pragmatic decisions for mashups are
made if using mashups is more effi cient
or effective than other techniques to
reach a goal. Participant U3 estimated
that by repurposing a mouse button to
fi re a click event with each revolution
of a wheel, he was able to complete the
sensing part of his project in a quar-
ter of the expected time. Furthermore,
incorporating existing pieces lets de-
signers leverage functionality that they
couldn’t build themselves. Framed this
way, we can think of the set of exist-
ing technologies in the world as a vast
library that we can use to lower the
threshold for development. For exam-
ple, U4 didn’t have suffi cient technical
knowledge to build his own physical
music controller, but, through adapt-
ers, he was able to leverage commer-
cially available game controllers.

Other times, practitioners employ
mashup design as a means of explo-
ration, learning, or inspiration. This
epistemic activity was most prevalent
among our toy inventors, who chose
mashups as effective means to illustrate
new concepts. What their clients paid
for was the idea, prototyped through
the mashup, not the implementation.
Furthermore, rapidly creating proto-
types gives designers concrete artifacts
they can expand on, react against, mod-
ify, and transform. This conversation
with materials (as opposed to thinking
in the abstract) is an important strategy
of refl ective practice.13 Refl ective prac-
titioners are concerned with problem
setting as much as problem solving, and
they let prototypes inform their under-
standing of the larger design space.

In the intrinsic case, practitioners
create mashups because they regarded
the activity of mashing as fulfi lling

JULY–SEPTEMBER 2008 PERVASIVE computing 53

in its own right. They derive intrin-
sic value from the joy of exercising a
craft (“what a great way to spend an
afternoon”) or from a personal ideol-
ogy (“recycling is my form of protest
against consumer culture”). Our inter-
views suggest that intrinsic activity is
most common among hobbyists.

Shopping for functionality. As Frederick
Brooks wrote, “The most radical pos-
sible solution for constructing software
is not to construct it at all.”14

How exactly does the activity of de-
signing and developing change when no
“new” software is created? Participants
reported spending signifi cant time on
fi nding and acquiring their ingredients.
In fact, some reported that this was the
most challenging or time-consuming
part of their process. U1 described the
processes of searching for components
and determining how to integrate them
into his design as “the main part of the
whole thing.” Or, as U3 put it, “The
real challenge is fi nding the interface
between the problem and commercially
available stuff.”

Our toy inventors also reported fre-
quent trips to the toy store without hav-
ing a shopping list for a project. U4 did
the same at electronics retail stores. We
found three reasons for shopping with-
out a project in mind:

It builds awareness of the state of the
art and shows designers what’s com-
mercially available.
It reduces the cost of future searches.
Like squirrels gathering nuts be-
fore the winter, designers stockpiled
mechanisms to have them ready later.
H2 said, “We collect [mechanical]
movements. … [During a project,
one of us will say] ‘Remember that
freaky belly movement?’”
It inspires new projects. “I go on shop-
ping trips and think about repurpos-
ing objects. ... I’ll walk around Wal-
greens and look at objects and think,
‘What could this be?’” (H1).

Searching for and acquiring pieces was

•

•

•

inspirational and helped steer projects
in a particular direction. This suggests
that shopping itself can take on an epis-
temic function.

Searching for bridges. Several times,
participants reported fi nding crucial
connecting pieces for their mashups in
fi elds only tangentially related to their
own. U4 discovered that a MIDI-to-
relay interface used by church-organ
builders would trigger lights based on
music commands for his Burning Man
installations. Adapters and bridges are
well-known design patterns for soft-
ware engineers. We focus on the social
side—the bridges that led practitioners
to discover these connections in the
fi rst place. While Web search was uni-
versally used, effective search requires
prior knowledge of the space of op-
portunity. Community sources play an
important role: for example, U1 inte-
grated two external button interfaces
into his project because he knew that
other researchers in his building had
used those particular models success-
fully. Scaling such community aware-
ness to geographically distributed

teams of designers is an important goal
for the future. In the hobbyist market,
Web sites like http://instructables.com
that publish instructions and parts lists
for do-it-yourself projects have begun
to address this need.

O ur analysis raises several
suggestions for creat-
ing future mashup design
tools. First, it’s important

to recognize mashup programmers and
hardware hackers as a unique target au-
dience: they’re not professionals, in that
their primary job description isn’t cre-
ating mashups, but neither are they un-
trained end users. Our participants were
all technologically sophisticated and
used mashup techniques to achieve some
other goal in their domain of expertise.
So, design tools must strike a balance
between complexity and fl exibility.

Second, the use of both dovetail as
well as hot-glue combinations in many
of the projects suggests that we need
tools that better support fl uidly tran-
sitioning between the two integration
styles within the same project.

the AUTHORS
Björn Hartmann is a PhD candidate in HCI at Stanford University. His research
focuses on prototyping tools for designers and lead users. Hartmann received
his MSE in computer and information science from the University of Pennsylva-
nia. Contact him at bjoern@cs.stanford.edu.

Scott Doorley is the director of the environments lab at Stanford University’s
Hasso Plattner Institute of Design. His research interest is applying design
methods to creative domains such as writing, fi lm making, and informal learn-
ing. Doorley received his MA in learning, design, and technology from Stan-
ford University. Contact him at sdoorley@stanford.edu.

Scott R. Klemmer is an assistant professor of computer science at Stanford
University, where he codirects the Human-Computer Interaction Group. His
primary research focuses are interaction techniques and design tools that en-
able integrated interactions with physical and digital artifacts and environ-
ments. Klemmer received his PhD in computer science from the University of
California, Berkeley. Contact him at srk@cs.stanford.edu.

54 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

Third, we can learn from product de-
signers who keep their studios stocked
with cannibalized parts by developing
tools that more fully embrace “design
by example modifi cation” or “design
by example augmentation” as a funda-
mental strategy.

Finally, design tool research often
focuses on the construction of appli-
cations. The important epistemic and
pragmatic functions of shopping sug-
gest that tools that support search, se-
lection, and sharing of existing compo-
nents could be equally valuable.

REFERENCES
 1. E. von Hippel, Democratizing Innova-

tion, MIT Press, 2005.

 2. A. Cypher, Watch What I Do: Programming
by Demonstration, MIT Press, 1993.

 3. H. Lieberman, F. Paterno, and V. Wulf,
End-User Development, Springer, 2005.

 4. J. Brandt et al., “Opportunistic Program-
ming: How Rapid Ideation and Prototyp-
ing Occur in Practice,” Workshop End-
User Software Eng., ACM Press, 2008,
pp. 1–5.

 5. E.A. Brewer, “Lessons from Giant-Scale
Services,” IEEE Internet Computing, vol.
5, no. 4, 2001, pp. 46–55.

 6. M. Weiser and J.S. Brown, “The Coming
Age of Calm Technology,” Beyond Calcu-
lation: The Next 50 Years of Computing,
P.J. Denning and R.M. Metcalfe, eds.,
Copernicus Books, 1997, pp. 75–86.

 7. J.K. Ousterhout, “Scripting: Higher Level
Programming for the 21st Century,”
Computer, Mar. 1998, pp. 23–30.

 8. B.A. Nardi, A Small Matter of Program-
ming: Perspectives on End User Comput-
ing, MIT Press, 1993.

 9. J. Mankoff, G.D. Abowd, and S.E. Hud-
son, “OOPS: A Toolkit Supporting Medi-
ation Techniques for Resolving Ambigu-
ity in Recognition-Based Interfaces,”
Computers and Graphics, vol. 24, no. 6,
2000, pp. 819–834.

 10. R. Eglash, “Appropriating Technology:
An Introduction,” Appropriating Tech-
nology: Vernacular Science and Social
Power, R. Eglash et al., eds., Univ. of Min-
nesota Press, 2004, pp. vii–xxi.

 11. D. Kirsh and P. Maglio, “On Distinguish-
ing Epistemic from Pragmatic Action,”
Cognitive Science, vol. 18, 1994, pp.
513–549.

 12. S.R. Klemmer, B. Hartmann, and L.
Takayama, “How Bodies Matter: Five
Themes for Interaction Design,” Proc.
6th Conf. Designing Interactive Systems,
ACM Press, 2006, pp. 140–149.

 13. D.A. Schön, and J. Bennett, “Refl ective
Conversation with Materials,” Bringing
Design to Software, T. Winograd, ed.,
ACM Press, 1996.

 14. F.P. Brooks, The Mythical Man-Month:
Essays on Software Engineering, Addison-
Wesley, 1995.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/csdl.

The opportunistic paradigm requires a major change of mindset
from designing and writing original software to a world of few rules,
theories, or recipes. Some titles to look for:

“Pragmatic and Opportunistic Reuse in Two Innovative Startups”
“Creative Thinking through Opportunistic Software Development”
“Monoliths to Mashups: The Need for Opportunistic Integration”
“Situated Software—Concepts, Motivation, Technology, and
 the Future”
“Balancing Opportunities and Risks in Component-Based Software
 Development”
And more ….

Check the IEEE Software Web site www.computer.org/software in
November or email software@computer.org and ask to be notified
when it’s published.

•
•
•
•

•

•

If you’re enjoying this issue
on hacking, you’ll also enjoy

Opportunistic Software
Systems Development

The November/December ‘08 special issue from
IEEE Software magazine!

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

