Towards Responsive Retargeting of Existing Websites

Gilbert Louis Bernstein
Stanford University
gilbert@gilbertbernstein.com

ABSTRACT

Websites need to be displayed on a panoply of different de-
vices today, but most websites are designed with fixed widths
only appropriate to browsers on workstation computers. We
propose to programmatically rewrite websites into respon-
sive formats capable of adapting to different device display
sizes. To accomplish this goal, we cast retargeting as a cross-
compilation problem. We decompose existing HTML pages
into boxes (lexing), infer hierarchical structure between these
boxes (parsing) and finally generate parameterized layouts
from the hierarchical structure (code generation). This doc-
ument describes preliminary work on ReMorph, a prototype
‘retargeting as cross-compilation’ system.

Author Keywords
Responsive Design; Document Layout; Webpages;
Retargeting

ACM Classification Keywords
H.5.2. User Interfaces: Screen Design

HOW BIG IS YOUR SCREEN?

Websites are being viewed on a increasing diversity of de-
vices. Among U.S. adults, 46% own smartphones, 57% have
laptops, 19% own an e-book reader, and 19% have a tablet
computer[S]. Across different manufacturers and models,
these devices saturate a continuum of screen size, aspect ra-
tio, and resolution. However, most websites are designed with
fixed size layouts, (in the vicinity of 960px) frustrating visi-
tors on mobile devices.

To cope with the challenge of adapting to a wide range of
devices, designers are adopting a suite of techniques and
strategies known as “responsive design.”’[4] Responsively de-
signed webpages maintain a single document, whose layout
“responds” to the viewport size and resolution by making dis-
crete changes in the layout of page elements. For instance, in
a responsive design a grid of photos is handled by progres-
sively decreasing the number of columns in response to nar-
rower display widths. (By contrast, proportional scaling re-
sults in shrinking the individual photos, limiting the effective
size adaptation to a narrower range of sizes)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).

UIST’ 14 Adjunct, October 5-8, 2014, Honolulu, HI, USA.

ACM 978-1-4503-3068-8/14/10.

http://dx.doi.org/10.1145/2658779.2658805

Scott Klemmer
UC San Diego
srk@ucsd.edu

RETARGETING AS COMPILATION

ReMorph is a system for programmatically rewriting existing
webpages, which we use to retrofit existing webpages with
viewport-adaptive layouts. (i.e. responsive design)

existing
webpage boxes

(LASM)
adaptive layout

layout tree

Figure 1. The ReMorph system design is loosely based on a compiler
with lexer, parser and code generation stages.

Abandoning HTML/CSS

Lexing is responsible for extracting boxes from a webpage.
Unlike most other systems that solve a similar problem, our
lexer is designed for both analysis and synthesis; it ensures
that we can independently reposition and resize the extracted
boxes. First the lexer embalms the page to remove dynamic
Javascript behavior, preserve the CSS-Rule-to-DOM-Node
mapping (by rewriting the CSS selectors), and create CSS-
style-closures. After embalming, the lexer determines which
DOM Nodes have any visible effect on the page, (requires
looking at over 10 independent CSS attributes) and which or-
der boxes are drawn in, (by reimplementing the algorithm in
Appendix E of the CSS 2.1 specification[2]) and finally re-
roots all visible DOM nodes as immediate children of the
BODY element, sequenced in the correct draw order.

Parsing Visual Design Using NLP Algorithms

Parsing is responsible for hierarchically organizing the boxes
output by the lexer. It produces a layout tree annotated with
parameter values. Parsing must address (i) ambiguity about
how boxes on the page should be grouped (Figure 2) and
(i1) ambiguity about how those groups should respond when
given more or less space in the layout. We use a 2d adaptation
of the well known CYK parsing algorithm[3] from Natural
Language Processing to resolve these ambiguities.

Figure 2. This horizontal sequence of boxes should be grouped into three
subgroups of 6, 2, and 3 elements respectively, rather than one group of
11 elements.

CYK (aka. Chart) Parsing uses dynamic programming to
solve subproblems in bottom-up order. Each sub-rectangle
of the logical grid (Figure 3) defines a parsing sub-problem.
Within this algorithmic structure, a grammar defines the
structure of valid parses, while a scoring function (equiva-
lently probability distribution) specifies which of the valid
parses is the best choice. To solve a sub-problem, a prob-
lem’s box is decomposed along a grid line (horizontally or



vertically) into two sub-problems; all applicable grammar
rules are matched, and we keep the highest scoring parse
for each type of symbol. (Our current vocabulary has three
non-terminals: columns, rowcols, and wrappers) By leverag-
ing features computed from the original webpage, the scoring
function can bias the parse towards more desirable results.
(Figure 4)

(@ () (©
¥ -

s

Figure 3. An example parsing problem, showing (a) the logical grid de-
composition and one possible parse (b) in context and (c) abstractly.

Figure 4. Using a simple feature (whether boxes come from the same
HTML list) we can make desirable groupings more likely. As a result,
the enclosing rowcol has switched to a column of 4 rows rather than a
column of 11 items.

Generating Layout Assembly Code

Codegen is responsible for converting the layout tree from
the parser into a layout program. Given a viewport width,
this layout program sets the positions and sizes of all of the
boxes on the page. We devised a small, easily implemented
Layout Assembly (LASM) language in which to specify these
programs. Each symbol in the layout tree is defined to expand
into a particular chunk of LASM code. (Figure 6)

Figure 5. An example of a LASM program and the results of two execu-
tions with varying page widths

LASM programs execute (Figure 5) by recursively placing
nodes by specifying a given input width; the resulting height
is returned as output, along with the locations and sizes of all
boxes in the sub-program. Row, Column, and Stack nodes se-
quence their child boxes horizontally, vertically, and in depth-
order respectively. Box nodes cause a specific box to be po-
sitioned and sized, while Space nodes correspond to a visual
no-op. Finally, If nodes choose which of their sub-trees to
place depending on whether their input width is greater or
less than a specified breakpoint.

LASM is deceptively simple. Formally, it is capable of en-
coding arbitrary piecewise-linear functions. This means it is
capable of expressing layouts specified in most layout sys-
tems proposed to date, including sophisticated linear con-
straint systems such as the one proposed by Badros et al.[1]

Figure 6. Code generation converts a layout tree into a LASM DAG by
expanding nodes into chunks of LASM glued together using the same
overall topology.

DESIGN TOOL OR AUTOMATION?

ReMorph can compute retargetings automatically, but we can
also incorporate it into a design tool. To help explore this
option, we conducted a preliminary study. We asked par-
ticipants to retarget an existing website to a narrower width
appropriate for mobile devices. While retargeting, our partic-
ipants focused on the vertical order of page elements, while
omitting elements they found less important. However our
participants’ decisions about the correct sequence or presence
of page elements were mutually inconsistent. As a result, we
are working on a design tool that (i) leverages ReMorph for a
good starting proposal, (ii) makes re-sequencing & suppres-
sion of content easy, and (iii) relies on ReMorph to solve pe-
ripheral issues, like the setting of thousands of gutter, margin
and other whitespace variables.

Currently the ReMorph system works on a limited set of test
pages used for development. Moving forward, we plan to
evaluate (a) how frequently ReMorph produces acceptable
designs automatically, (b) how much effort is required of de-
signers to edit the designs to their satisfaction, and (c) what
kinds of designs are not addressed by ReMorph.

ACKNOWLEDGMENTS
Thanks to Pat Hanrahan and Ranjitha Kumar for their advice.

REFERENCES

1. Badros, G. J., Borning, A., Marriott, K., and Stuckey, P.
Constraint cascading style sheets for the web. In
Proceedings of the 12th Annual ACM Symposium on User
Interface Software and Technology, UIST *99, ACM
(New York, NY, USA, 1999), 73-82.

2. Bos, B., Celik, T., Hickson, L., and Lie, H. W. Cascading
style sheets level 2 revision 1 (css 2.1) specification.
World Wide Web Consortium, Candidate
Recommendation CR-CSS21-20070719, July 2007.

3. Jurafsky, D., and Martin, J. H. Speech and Language
Processing (2nd Edition) (Prentice Hall Series in
Artificial Intelligence), 2 ed. Prentice Hall, 2008.

4. Marcotte, E. Responsive Web Design, May 2010. http:

//alistapart.com/article/responsive-web-design.

5. Zickuhr, K., and Smith, A. Digital Differences, April
2012. http://pewinternet.org/Reports/2012/
Digital-differences.aspx.


http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://pewinternet.org/Reports/2012/Digital-differences.aspx
http://pewinternet.org/Reports/2012/Digital-differences.aspx

	How Big is Your Screen?
	Retargeting as Compilation
	Abandoning HTML/CSS
	Parsing Visual Design Using NLP Algorithms
	Generating Layout Assembly Code

	Design Tool or Automation?
	Acknowledgments
	REFERENCES 

