Information foraging, interface design, and human factors Hyeonsu Kang and Enhao Cui

Information Foraging

Peter Pirolli and Stuart Card

Learning goals

- 1. Be able to explain the context and implementation of Information Foraging Theory
 - a. Information fragmentation, poverty of attention, cognitive architectures, spreading activation
 - b. Information patch foraging, Charnov's Marginal Value Theorem
 - c. Information Scent
- 2. Understand what approach did the author take to evaluate the theory
- 3. Think about Information Foraging Theory's application in the context of user interaction and design

Max [R = energy/time]

Max [R = useful info/time]

Maybe the way we seek information is an example of *exaptation** from food foraging. Can we model it using Optimal Foraging Theory?

* a term used in evolutionary biology to describe a trait that has been co-opted for a use other than the one for which natural selection has built it.

Source: Peter Pirolli

"What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it" -- Herbert Simon

The important question lies not only in how to generate good information but also in **how to design a good information architecture** that enables people an easy access to useful information.

Figure 2. Schematic layout of the business intelligence office.

Because the environment is malleable for humans in information foraging (unlike animals in the wilderness foraging for food), a **predictive model** can help answer two design questions:

- How can we better-shape or adapt ourselves to info. environment?
- How can the info. environment be designed better to match human skills/strategies/needs?

Q. As a group of 2 - 3, think about a hypothetical situation in which an individual's planning a trip to New York. Then, as a group, discuss about how you would carry out this planning. Specifically ground your discussion around *information foragers*, the *information*, and the *strategy*:

Information foragers: what do you want to know about? Information: what kind of information are you looking for? Where is that available, how can you obtain it? Strategy: how would you strategize your planning? For example, would you collect as much info as possible first then filter out? The model should be able to describe

- "Information patch" foraging
- Relevance assessment by "information scent"

Background: The possibility of unifying cognitive **theories**?

	TIME	ACTION	MEMORY	THEORY
(sec)	(common units)			
109	(decades)	Technology	Culture	
108	(years)	System	Development	Social and
107	(months)	Design	Education	Organizational
106	(weeks)	Task	Education	
105	(days)	Task	Skill	
104	(hours)	Task	Skill	Bounded
103	(ten mins)	Task	LTM	Rationality
102	(minutes)	Task	LTM	
10	(ten secs)	Unit task	LTM	· · · · · · · · · · · · · · · · · · ·
1	(secs)	Operator	STM	Psychological
10-1	(tenths)	Cycle time	Buffers	
10-2	(centisecs)	Signal	Integration	Neural and
10-3	(millisecs)	Pulse	Summation	Biochemical

The Prospects for Psychological Science in Human-Computer Interaction Allen Newell and Stuart Card

Background: The possibility of unifying cognitive **theories**?

Growing interest in developing cognitive architectures: Ex. ACT-R architecture, SOAR

Figure 1. ACT-R Architecture

The Newell Test for a theory of cognition John Anderson and Christian Lebiere

"The difficulty in finding useful information related to the balkanization* of the Web structure"

"It is difficult to solve this [Web structure] fragmentation problem by designing an effective and efficient classification scheme, an alternative approach is to seek regularities in user patterns that can then be used to develop technologies for increasing the density of relevant data for users"

> Strong Regularities in World Wide Web Surfing Bernardo Huberman, Peter Pirolli et al.

* originally used to describe the process of fragmentation or division of a region or state into smaller regions or states that are often hostile or uncooperative with one another.

		Table	e of notation
		G	the ratio of the total net amount of valuable info. gained
Plugging in everything yields		T_B	The total amount of time spent between-patches
$\lambda T_B g$	λg	T_W	The total amount of time spent within-patches foraging
$R = \frac{\lambda T_B g}{T_B + \lambda T_B t_W} =$	$1 + \lambda t_W$	g	The avg. gain per patch
		t_B	The avg. time between processing patches
$\lambda = 1/t_B$	$\pi = g/t_{W}$	t_W	The avg. time to process patches
Prevalence	Profitability		ματοποσ

Table of notation

G	the ratio of the total net
	amount of valuable info.
	gained

- T_B The total amount of time spent between-patches
- T_W The total amount of time spent within-patches foraging
- g The avg. gain per patch
- t_B The avg. time between processing patches
- t_W The avg. time to process patches

Gain graph (for a specific type *i*)

Q. Is this realistic enough?

Charnov's Marginal Value Theorem states m1 > m2.

Charnov's Marginal Value Theorem states m1 > m2.

Q. what are other similar patterns observed in the real-world? How does marginal value theorem affect information foraging behaviors?

Enrichment activities & their effect

Q. What are real-life examples of each enrichment type? And can you explain it using the changes described in the graphs?

Information diet selection (there are not just one type of patches!)

If there are different types of information, (differing in their respective profitability), then you'll need to pursue items of the type of a specific profitability in an all-or-none manner; never have a mixed diet. (zero-one rule)

To create a decision model, introduce a new **probability parameter** p_i -- we'll eventually solve for p_i's

$$p_i = 0 \text{ if } g_i / t_{Wi} < k_i / c_i$$

$$p_i = 1 \text{ if } g_i/t_{Wi} > k_i/c_i$$

Table of notation

- G the ratio of the total net amount of valuable info. gained
- T_B The total amount of time spent between-patches
- T_W The total amount of time spent within-patches foraging
- g The avg. gain per patch
- t_B The avg. time between processing patches
- t_W The avg. time to process patches

Q. What are the examples of how the diet selection algorithm can be used?

The optimal diet selection algorithm suggests two aspects of the information foragers' behavior:

- **Lost opportunity.** Information item types should be ignored if their profitability is less than the expected rate of gain of continuing search for other types of items
- Decision to include a new information item type is independent of its prevalence but profitability (but dependent of prevalence of already included item types).

Lambda appears only on the lefthand-side

$$R(k) = \frac{\sum_{i=1}^{k} \lambda_i g_i}{1 + \sum_{i=1}^{k} \lambda_i t_{W_i}} > \frac{g_{k+1}}{t_{W_{k+1}}} = \pi_{k+1}$$

Righthand-side contains only the profitability

Then don't go for k+1

Q. What is the main limitation of the diet selection algorithm to be practical in predicting the actual selections we make?

The optimal diet selection algorithm suggests two aspects of the information foragers' behavior:

- **Lost opportunity.** Information item types should be ignored if their profitability is less than the expected rate of gain of continuing search for other types of items
- Decision to include a new information item type is independent of its prevalence but profitability (but dependent of prevalence of already included item types).

Lambda appears only on the lefthand-side

$$R(k) = \frac{\sum_{i=1}^{k} \lambda_i g_i}{1 + \sum_{i=1}^{k} \lambda_i t_{W_i}} > \frac{g_{k+1}}{t_{W_k+1}} = \pi_{k+1}$$

Righthand-side contains only the profitability

Information scent

New evidences on **the representation of semantic knowledge** in the human brain (--> spreading activation)

New empirical evidence on user's web behavior

Information Scent as a Driver of Web Behavior Graphs: Results of a Protocol Analysis Method for Web Usability Stuart Card et al.

Background: The representation of semantic knowledge

Convergent architecture

How semantic knowledge is represented in our brain

→ Inspired from this discovery, the **spreading activation** mechanism became an integral part of the assessment of info. scent.

b Distributed-plus-hub view

Where do you know what you know? The representation of semantic knowledge in the human brain

Patterson et al.

The spread of activation from one cognitive structure to another is determined by some network representation.

Base activation for query *i*

 $A_i = \overline{B_i} + \sum_j W_j S_{ji}.$

Sum of activation from other concepts

* Interpret A_i as Bayesian a posteriori logarithmic odds, B_i as log prior odds of *i* being relevant, and S_{ji} as the log likelihood ratios that i is relevant given that it occurs in the context of word *j*

(Prior) Odds
$$O(i) = \frac{P(i)}{P(\neg i)}$$

Posterior Odds $O(i|j) = \frac{P(i|j)}{P(\neg i|j)}$
 $= \frac{P(j|i)P(i)}{P(j|\neg i)P(\neg i)}$
 $= \frac{P(i)}{P(\neg i)} \times \frac{P(j|i)}{P(j|\neg i)}$
 $= O(i) \times \frac{P(j|i)}{P(j|\neg i)}$

Making a simplifying independence assumption for each individual feature j in the set P of proximal cues yields

$$O(i|P) = O(i) \times \prod_{j \in P} \left\{ \frac{P(j|i)}{P(j|\neg i)} \right\}^{w_j} \underline{A_i} \underline{B_i} \underline{B_i} \underline{S_{ji}}$$

Finally, taking log of both sides $\log O(i|P) = \log O(i) + \sum_{j \in P} w_j \log \frac{P(j|i)}{P(j|\neg i)}$

Example by Robert Goldstone

Proximal cues cell medical patient treatments dose W, beam cancer S_{ii} D

Desired distal information

Example by Robert Goldstone

Info scent assessment model using activation spreading (adopted from Kruschke)

$$g(c, s) = \exp\left(\frac{\sum_{i \in Q} A_i}{T}\right)$$

Info scent assessment model using activation spreading

(adopted from Kruschke)

$$g(c, s) = \exp\left(\frac{\sum_{i \in Q} A_i}{T}\right)$$

$$g(c, s) = \exp\left(\frac{\sum_{i \in Q} A_i}{T}\right)$$
Text Database: tre1
This Window: 0 Parent Window: -1
Custer 0 (34
cell, patient, radiation, dose, bean, d
AP: Early Results In Hospital Patient S
DOE: Doses of secondary radiation appead
AP: Poll: AIDS Test Confidentiality Opp
Custer 1 (23
court, judge, law, attorney, appeal, la
AP880502-0111
HSJ: Supreme Court to Review New York L
HSJ: Law -- Legal Beat: Court Affirms V
Constant interaction-time scatter

screen

	Scatter/Gather			
Text Database: trec1 This Window: 0 Parent Window: -1	Scatter/Gather Show Titles	Start New Query QUIT Scatter/Gather		
🗖 Cluster 0 (389	40)	☐ Cluster 5 (12237		
cell, patient, radiation, dose, beam, dis AP: Early Results In Hospital Patient Stu DOE: Doses of secondary radiation appears AP: Poll: AIDS Test Confidentiality Oppor	udy Sho (aid, study, percent, ing as (radiation, dose, expo	ZF: Windows 3.0 wins with the users. (News		
🗖 Cluster 1 (235	64)	🗇 Cluster 6 (46144		
court, judge, law, attorney, appeal, law, AP880502-0111 HSJ: Supreme Court to Review New York Law HSJ: Law Legal Beat: Court Affirms Yer	<pre>(court, state, u.s., f That (court, law, federal,</pre>	FR: Community Development Block Grants		

Cutting, Karger, and Pederson, 1993

Conceptual working of ACT-IF: human information foraging behavior can be modelled with

- Declarative (factuals and semantic relationships) memory
- Procedural (if-then rules that executes based on activation) memory
- Goal (what user wants to find out) memory
- Information Scent mechanism

In the interest of time, we examine two of the procedural memory - declarative memory mappings below (in blue):

Q. Can all human behaviors modeled in this analytic way using the notion of declarative and procedural memory?

Q. Can all human behaviors modeled in this analytic way using the notion of declarative and procedural memory?

 \rightarrow Related to your discussion points:

The Newell Test for a theory of cognition John Anderson and Christian Lebiere

They compared ACT-R with Connectionism using 12 criteria (distilled from Newell's original 13 criteria). Among them, criteria such as *Consciousness, Development, Evolution, and Natural language* are the ones that ACT-R is deemed to be performing worse.

SELECT-RELEVANT-CLUSTER: Clusters at state s should be selected so long as their profitability $\pi(c, s)$ is greater than the overall rate of gain for the clusters gathered at that stat $R_{D}(k, s, t)$.

g(c, s)

The profitability term can be computed as

The numerator is the gain computed using the modeling earlier, and the denominator is time, where tq and tN are the time it takes to process a relevant document title and the title in the gathered cluster, respectively

$$\pi(c, s) = \frac{g(c, s)}{I_g g(c, s) + I_N N(c, s)}$$
gain computed
relier, and the
where tg and
es to process
title and the
uster, respectively
$$g(c, s) = \exp\left(\frac{\sum_{i \in Q} A_i}{T}\right)$$

SELECT-RELEVANT-CLUSTER: Clusters at state s should be selected so long as their profitability $\pi(c, s)$ is greater than the overall rate of gain for the clusters gathered at that stat $R_D(k, s, t)$. $\sum_{i=1}^{k} g(i, s)$

The overall rate of gain can be computed as $R_D(k, s, t_B) = \frac{i-1}{t_B + t_W}$

$$R_D(k, s, t_B) = \frac{\sum_{i=1}^{n} g(i,s)}{t_B + [t_N \sum_{i=1}^{k} N(i,s) + t_g \sum_{i=1}^{k} g(i,s)]}$$

 \mathbf{k}

An experiment that show the predictive power of the model (but there are more than one empirical evidence introduced here!)

Participants: 12 adults from Xerox PARC or Stanford

Task: Collect as many relevant articles as possible for a given query topic using Scatter/Gather*

Conditions: 12 query topics at three levels of difficulty (measured by the mean number of expert-identified relevant documents)

Hard: avg. 46 vs Medium: avg. 303 vs Easy: avg. 865

Study design: 4 blocks of topics were constructed, each topic-block contained 1 easy, 1 medium, and 1 hard topic (in this order). Each participant completed 2 blocks of topics using Scatter/Gather (2 other for other activities), the presentation order of blocks was counterbalanced over participants, within groups, according to a randomized Latin square.

4 participants were in a timed condition, 4 were in not-timed. The latter group of participants also provided subjective ratings on what percentage of texts in a cluster seemed relevant
Experiment - Can the information diet model predict which clusters get selected?

 Table 1.

 Optimal information diet analysis for Scatter/Gather (data from Pirolli et al., 1996).

 The optimal diet includes the four highest profitability clusters.

Task Condition (Rank of cluster within	Participants' estimate of net relevant	Handling time in sec	Estimated profitability (π_{I}) in relevant documents per
query condition)	documents (g _i)	(t _{wi})	sec.
Easy (1)	13,670	957	14.28
Medium (1)	10,400	994	10.46
Hard (1)	11,890	1,261	9.43
Easy (2)	5,824	957	6.08
Easy (3)	2,526	957	2.64
Medium (2)	2,607	994	2.62
Hard (2)	1,991	1,261	1.58 Text Database: tre
Easy (4)	1,040	957	1.09 This Window: 0 P
Easy (5)	891	357	.93
Hard (3)	379	1,261	.30 cell, patient, r AP: Early Result DDE: Doces of se AP: Poll: AIDS

Participants chose (avg.)

1.38 clusters for Hard queries
 1.63 clusters for Medium queries
 2.25 clusters for Easy queries

Experiment - Can the information diet model predict which clusters get selected?

Participants chose (avg.)1.38 clusters for Hard queries1.63 clusters for Medium queries2.25 clusters for Easy queries

Model predicted Top 1 cluster for Hard queries Top 1 cluster for Medium queries Top 2 clusters for Easy queries

Figure 15. Analysis of the optimal information diet. The profitability (π) of clusters is ranked and added to the diet in order of decreasing profitability until the rate of gain, R, so long as the profitability of the item is greater than R.

Experiment - Can the information scent model predict perceived topic relevance?

Figure 16. Observed ratings of the percentage documents in each cluster that are relevant and the ratings predicted by activation-based assessment of information scent.

Experiment - Can the IFT model predict the selection of clusters?

If we let

x = Cluster Profitability – Expected Rate of Gain

 $= \pi(c,s) - R_D(k,s,t),$

the model states that decisions should be made by users to

(a) select a cluster when x > 0

(b) do not select a cluster when x < 0

x = 0 happens when profitability equals rate of gain.

Experiment - Can the IFT model predict the selection of clusters?

The shift in probability of selecting vs not selecting clusters across the threshold x = 0 $\chi^2(1, N = 2,929) = 50.65, p < .0001$ $\mathbf{x} = \pi(\mathbf{c}, \mathbf{s}) - \mathbf{R}(\mathbf{k}, \mathbf{s}, \mathbf{t})$

Figure 19. The difference in density distributions from Figure 18, select(x) - unselect(x) as a function of the difference between cluster profitability and rate of gain, $x = \pi(c, s) - R(k, s, t)$.

You commented

Q. Give an example of how information foraging theory can be applied to increase the information scent of a website design.

Some careful rational analysis can lead to a mathematical model of spreading activation, which then can be used to predict user behaviors on the Web.

Q. What are the potential applications of this modeling?

Q. What are the limitations?

Q. How could information foraging theory be extended to model cooperative behaviors? (e.g. Wiki, collaborative filtering)

TIME		ACTION	MEMORY	THEORY	
(sec)	(common units)				
109	(decades)	Technology	Culture		
108	(years)	System	Development	Social and	
107	(months)	Design	Education	Organizational	
106	(weeks)	Task	Education		
105	(days)	Task	Skill		
104	(hours)	Task	Skill	Bounded	
103	(ten mins)	Task	LTM	Rationality	
102	(minutes)	Task	LTM	ā.	
10	(ten secs)	Unit task	LTM		
1	(secs)	Operator	STM	Psychological	
10-1	(tenths)	Cycle time	Buffers		
10 ⁻² (centisecs)		Signal	Integration	Neural and	
10-3	(millisecs)	Pulse	Summation	Biochemical	

Revisiting the earlier question, modify the task at hand to "a group of friends planning a trip to New York."

The Prospects for Psychological Science in Human-Computer Interaction Allen Newell and Stuart Card

Q. How could information foraging theory be extended to model cooperative behaviors? (e.g. Wiki, collaborative filtering)

Barack Obama	Total: 7358	-290
User:HailFire	1189 (16.2%)	0
User:Tvoz	345 (4.7%) 2008 Ma	= 0
User:Jersyko	264 (3.6%) 2008 Max	w=20
User:Steve Dufour	134 (1.8%) 2006 Max	018
User:Bobblehead	130 (1.8%) 2008	- 6
User:Dereks1x	68 (0.9%) 2008 Max	or=30
User:Gdo01	66 (0.9%) 2006 200	01=0
User:Bbsrock	61 (0.8%) ²⁰⁰⁶ 2007	pré-5
User:Local667forOb	56 (0.8%) 2005 Mar	or≂30
User:Italiavivi	51 (0.7%) 2006 Main 2017	or=10
WikiDashboard Hot List 🐻 Su	nit Preferences Show Top [None, 5,10,20] Editors Guide Original Copy Disclaimer (c) PARC, Inc	2007

Figure 2 Article Dashboard. The top summary graph shows the weekly edit trend of this page. Below the summary graph, there is a list of active editors and their activities on the article.

From Wikipedia, the free encyclopedia	1															
Contribution		Edit	Total: 2	2774	20	Sam	N	YM	γ	2	41	www	W	in.	m	Hered 470
Hillary_Rodham_Clinton	762(3.3%)	2005	1. I.	-								111	201			1 X=5
Talk:Hillary_Rodham_Clinton	305(1.3%)	2005	1. 1.	1 1			200		1	1111		TUTT	20 7			Max=3
Rudy_Giuliani	251(1.1%)	2005			1 1		200	6	1 1	1 1			2003			tox = 5
Bruce_Springsteen	187(0.8%)	2005				111	0.000	6 111				1111	2007		1.1	Max=3
Elton_John	161(0.7%)	2005	1 1	1 1	1 1		200	6				T	2007			
Dixie_Chicks	155(0.7%)	2005	1.1.1			1111	200	6					2007		1	Max = 3
Hillary Rodham Clinton control		2005										THE	2002	1 1 1 1		Max - 3
alk:Rudy_Giuliani	104(0.5%)	2005						6 1 1			1					1 ax = 3
Fony Bennett	104(0.5%)	20.05		1 1	111						1					Max-2
Garth Brooks	101(0.4%)	2005	1 1	1 1		TIT	100	1	1111				2007			Max = 3

Figure 2 User Dashboard .The dashboard displays weekly edit trend of an editor as well as the list of articles that the editor made revisions on. Trustworthiness is another dimension important in processing and aggregating information

So you know you're getting the best possible information: a tool that increases Wikipedia credibility Peter Pirolli et al.

Beyond Performance: Feature Awareness in Personalized Interfaces

Leah Findlater and Joanna McGrenere

Learning goals

- Be able to explain interface personalization and two related measures: performance and awareness
- Understand principles and techniques for designing experiments to maximize statistical power

Different usage of GUI

Home	Insert	Page Layou	ıt Formulas	Data Revie
PivotTable	Recommende		$ \cdot$ \cdot	artArt Screenshot
A1	PivotTables	f _x		
A	В	С	D E	F
1				

ú	Exce	I File	Edit	View	Insert Forma	t To	ols D	ata V	Vindow	He
Н	ome I	nsert	Page L		Cells Rows Columns		Review	w Vi	ew	
	\$	2		-	Sheet	►		🔒 si	tore	I
PivotTable Recommended Table Pictur PivotTables			ondit P		nshot	🔊 м	MyAdd-ins ▼ [N			
A1	*	× v	f_X		Sparklines Table					
1	Α	В	C	:	Add-ins	►	-	G	Н	
2 3 4 5 6					Page Break Function Name New Commen	► nt				
7 8 9					Picture Audio	*				
10					Movie	•	Mo	vie Bro	wser	
11 12					Symbol		Mo	vie fror	n File	-
13					Shape	•			-	-
14			2		Taut Day					
15					Text Box SmartArt WordArt					
16			1							
17			1	1			_			
18				1	Object		-			
19			-	_	Hyperlink	ЖK	-		-	
20 21						-				
21						-				

Components of Interface Personalization

Performance

- Core task performance
- New task performance

Awareness impacts

- Awareness is about learning generally.
- Measures : Recognition rate of unused features, New task performance

Control - Adaptive (Automatically), Adaptable (Manually), or a mix of both

Granularity - Fine (high accuracy) & Coarse (low accuracy)

Visibility - Hide, mark, resize, move, replicate

Frequency - High/low frequency

Discussion

In what cases are adaptive and adaptable personalizations desirable, respectively?

C	ontrol		Adaptive	Adaptable	Mixed-initiative		
Gran	Granularity		Fine	Coarse	Fine	Coarse	Fine
	Hidden		MS Office 2003 adaptive menus	Layered interfaces (Clark and Matthews, 2005; Findlater and McGrenere, 2007; Gustavsson Christiernin et al., 2003; Plaisant et al., 2003; Shneiderman, 2003) User role-based (Findlater et al., 2008; Greenberg, 1991)	Multiple interfaces (McGrenere et al., 2002)		Incremental interfaces (Brusilovsky and Schwarz, 1997) Adaptive bar (Debevc et al., 1995) Adaptively supported multiple interfaces (Bunt et al., 2007)
Visibility of change	Moved		Original split menus (Sears and Shneiderman, 1994) Frequency based menus (Mitchell and Shneiderman, 1989) Adaptive hierarchical menus (Greenberg and Witten, 1985) Adaptive split menus (Findlater and McGrenere, 2008) and toolbars (Gajos et al., 2006)				
Visi	Resized		Ability-based interfaces (Gajos et al., 2008b) Morphing menus (Cockburn et al., 2007)				
	Replicated		Replicated split interfaces (Findlater and McGrenere, 2008; Gajos et al., 2006; Gajos et al., 2008a)		Facades (Stuerzlinger, et al., 2006)		
	Marked		Colour highlighting (Tsandilas and schraefel, 2005) Ephemeral adaptation (Findlater et al., 2009)	Marked layered interface (Findlater and McGrenere, 2007)			

Concluded from the experiments are...

Control of personalization

- Users improve their awareness when doing the "adaptable" personalization.
- "Adaptive" personalization could trade accuracy for awareness.

Granularity

- "Fine" improves core task performance.
- "Coarse" could contribute to awareness if properly designed.

Visibility of change

- Hiding negatively impacts awareness.
- Graphical marking may result in higher awareness than hiding.
- Direction of change could affect awareness and core task performance.

Frequency of Change

- Future work required.

SI-Layered Interface

Minimal

For	mat	Tools	Slide Show					
A	Eor	nt						
E	Bull	Bullets and Numbering						
×	Alig	Alignment						
×	Line	Line Spacing						
×	Cha	Change Cas <u>e</u>						
×	Rep	Replace Fonts						
-	Slide <u>D</u> esign							
	Slid	Slide Layout						
×	Bac	Background						

Object...

Control

Marked

S II&III - Split Menus

Menu3 Basil Oregano Thyme Orange Yellow Red Pink Microsoft Google Yahoo Intel Yeltsin

High & Low Accuracy

Control

Hypothesis - Personalization makes better core task performance but lower awareness than the control condition.

Conditions - Minimal, Marked, Control

Methodology - between-subjects design

Result

- Core task performance: Minimal > Control
- Awareness: Control > Minimal
- Marked shows no significant effect on performance and awareness.
- Awareness may indirectly impact new task performance.

Experiments

Study I	There is a trade off between core task	Study II
Layered Interfaces	performance and awareness.	Adaptive Split Menus

Problem - Impact of adaptive split menus and screen size on core task performance, awareness and user satisfaction

Conditions

- Screen size (between-subjects factor) : PDA, desktop
- Menu type (within-subjects factor) : High (78%), Low (50%), Control (static)

Result

- Tradeoff between core performance and awareness.
- Large screen leads to better performance and better awareness (more menu items).
- Awareness: control > low > high
- Performance: high > control.

Experiments

Hypotheses

- Impact of awareness on new task performance: Control & Low > High
- Core task performance: High & Control > Low
- Perception of Awareness: Control & Low easier than High

Conditions - High (78% accuracy), Low (50% accuracy), Control

Methodologies - Within-subjects design, RM ANOVA

Participants - 30 (19 female)

Measures

- The time to select "new" items
- Corrected recognition rate
- Time to select "old" items
- Feedback on each of the menu types

Results

- Impact of awareness on new task performance: Control > Low > High
- Core task performance: High > Control > Low
- Perception of Awareness: Control & Low easier than High

Results

- Awareness impacts new task performance.
- Awareness and core task performance work against each other.
- Lower recognition test scores due to less exposure to the interface

Q: The low accuracy condition does not serve as a trade-off between awareness and core task performance, why?

Design Implications

- Look beyond accuracy.
- Identify the **balance** between core performance and awareness.
- Match design characteristics to core performance and awareness.
- Use appropriate awareness measure in evaluations.
- Support exploratory behaviour.
- Make features easily discoverable.

Methodologies

Within-subjects Design

Between-subjects Design

ANOVA

Within-subjects design

- A type of experimental design in which participants are exposed to every treatment or condition
- All conditions per group

Within-subjects design

Advantages

Relatively small applicant pool (30 participants in experiment III)

Reduced errors due to the same participants in all conditions

- No individual difference (Everyone serves as his/her own baseline.)

Disadvantages

Carryover effect (Randomly generate selections.)

- Practice effects

Fatigue (Limited length procedure, short breaks)

Between-subjects design

- A type of experimental design in which two or more groups of subjects each is tested by a different testing factor simultaneously
- One condition per group

Between-subjects design

Advantages

No Carryover effect - Each group is assigned with one condition only.

Less fatigue - Relatively shorter compared with within-subjects design.

Disadvantages

Large Applicant pool

Errors due to the different participants in all conditions

- Individual difference

ANOVA

- Analysis of Variance
- A statistical test of whether or not the means of several groups are equal.
- "Extended" t-test with more than two groups

ANOVA

- One-way Anova
- Multivariate Anova
- Repeated Measures Anova
One-Way ANOVA

Null hypothesis: The means for all three groups are the same.

One-Way ANOVA

It's the people that make the difference, not the drink.

It's the drink that make the difference, not the people.

One - Way ANOVA

$F = \frac{between\ groups}{within\ groups}$

- Calculate the variance between and within groups.
- The larger the ratio, the more likely that the groups have different means.

Multi - Variable ANOVA

RM ANOVA

- "Analysis of dependencies"
- A test to prove an assumed cause-effect relationship between the independent variable(s) and the dependent variable(s)
- Used in within-subjects design

Q: Will you use ANOVA in your project? Why or why not?

Which professor style is more effective?

Adopted & modified from Scott Klemmer and Michael Bernstein

How Can We Address Ordering Effects?

Order 1

Order 2

Order 3

Detects the order effect!

Order 1 1->2->3

Order 2 2->3->1

Order 3 3->1->2

Detects the sequence effect!

Order 1 1->2->3

Order 2 2->3->1

Order 3 3->1->2

Detects the treatment effect!

	[:	1]	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\\1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$	$2 \\ 3 \\ 1$	3 1 2			
	[1	2	3	4]	[1	2	3	4]		
	2	1	4	3	2	4	1	3		
	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	4 3	$egin{array}{c} 1 \\ 2 \\ 4 \end{array}$	2	$\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$	1	4 2 3	2		
	$\begin{bmatrix} 4\\ 2 \end{bmatrix}$		2	- 1] 5]		3	2	1		
[1	2	3	4	5]	$\lceil 1 \rangle$	2	3	4	5]	
$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	3	5	1	4	2	$\frac{4}{5}$	1	5	3	
3	5	4	2	1	3	5	4	2	1	
$\begin{bmatrix} 4\\5 \end{bmatrix}$	1	2	5 3	3	$\begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}$	1	5	3	2	
$\lfloor 5$	4	1	3	2	$\lfloor 5$	3	2	1	4	

Examples of main-class Latin Squares of order 1 ~ 5

Compared to simple randomization, this Latin Square detects two blocking factors (sequence and order) instead of one. Simple randomization would've required 3 * 3 * 3 = 27 experiments, here, only 9. This is 18 / 27 * 100 = 66.7% reduction!

* Careful design can further reduce the number of treatments required \rightarrow Graeco Latin Square

Statistical tests for subjective measures (e.g. Likert-scale questionnaire responses, etc.)

Friedman test: a non-parametric test for differences between groups when the dependent variable being measured is **ordinal** (or continuous). Some assumptions that have to be met:

1: Same group of subjects measured on **three or more** different occasions.

2: Group is randomly sampled from the entire population.

3: Your dependent variable should be measured at the ordinal (e.g. 7-point Likert scale) or continuous (e.g. temperature) level.

4: Samples do NOT need to be normally distributed.

 \rightarrow Tells whether there were differences between groups but not exactly where they occurred.

Statistical tests for subjective measures (e.g. Likert -scale questionnaire responses, etc.)

Report the result as: "There was a statistically significant difference in easiness of applying rubric in design critique depending on the type of critique , $\chi^2(2) = 7.600$, p = 0.022."

Statistical tests for subjective measures (e.g. Likert -scale questionnaire responses, etc.)

Wilcoxon signed-rank test: a non-parametric post-hoc test to check for where the differences actually occurred. Assumptions

1: Your dependent variable should be measured at the ordinal (e.g. 7-point Likert scale) or continuous (e.g. temperature) level.

2: Your independent variable should consist of two categorical, related groups or matched pairs.

3: The distribution of the differences between the two related groups needs to be symmetrical in shape.

Report the result as: "Wilcoxon signed-rank test showed that a 4 week, twice weekly acupuncture treatment course did not elicit a statistically significant change in lower back pain in individuals with existing lower back pain (Z = -1.807, p = 0.071). Indeed, median Pain Score rating was 5.0 both pre- and post-treatment."

source: https://statistics.laerd.com/spss-tutorials/wilcoxon-signed-rank-test-using-spss-statistics.php

Thank you

Appendix A.

The original (vectorized form) of Charnov's Marginal Value Theorem

The formal Charnov's Marginal Value Theorem (in the vectorized form)

For patches {1, 2, ..., P}: patch foraging times $(t_{W1}, t_{W2}, ..., t_{WP})$ and the rate of gain $R = \frac{\lambda g_i(t_{Wi}) + k_i}{c_i + \lambda_i t_{Wi}}$

For each t_{wi}, maximization of R should satisfy (a set of P equations)

$$\frac{\partial R}{\partial t_{Wi}} = \frac{\lambda_i g_i'(t_{Wi}) [\lambda_i t_{Wi} + c_i] - \lambda_i [\lambda_i g_i(t_{Wi}) + k_i]}{(\lambda_i t_{Wi} + c_i)^2}$$

And setting the partial derivative to zero

$$g'_{p}(\hat{t}_{WP}) = R(\hat{t}_{W1}, \hat{t}_{W2}, \ldots, \hat{t}_{WP}).$$

Appendix B. Derivation of the optimal information diet selection algorithm

If there are different types of information, (differing in their respective profitability), then you'll need to pursue items of the type of a specific profitability in an all-or-none manner; never have a mixed diet. **(zero-one rule)**

To create a decision model, introduce a new **probability parameter** p_i -- we'll eventually solve for p_i's

$$\begin{split} R &= \frac{\sum_{i=1}^{P} p_i \lambda_i g_i}{1 + \sum_{i=1}^{P} p_i \lambda_i t_{W_i}} = \frac{p_i \lambda_i g_i + \sum_{j \in P \setminus \{i\}} p_j \lambda_j g_j}{1 + p_i \lambda_i t_{W_i} + \sum_{j \in P \setminus \{i\}} p_j \lambda_j t_{W_j} p_j \lambda_j t_{W_j}} \\ &= \frac{p_i \lambda_i g_i + k_i}{p_i \lambda_i t_{W_i} + c_i} \\ k_i &= \sum_{j \in P \setminus \{i\}} p_j \lambda_j g_j \\ c_i &= 1 + \sum_{j \in P \setminus \{i\}} p_j \lambda_j t_{W_j} \end{split}$$

- G the ratio of the total net amount of valuable info. gained
- T_B The total amount of time spent between-patches
- T_W The total amount of time spent within-patches foraging
- g The avg. gain per patch
- t_B The avg. time between processing patches
- t_W The avg. time to process patches

Information diet selection (there are not just one type of patches!)

Deriving by *Pi* yields

 $\frac{\partial R}{\partial p_i} = \frac{\lambda_i g_i c_i - \lambda_i t_{Wi} k_i}{(c_i + p_i \lambda_i t_{Wi})^2}$

The righthand-side of the equation is either >0 or <0, independent of p_i . Therefore maximization happens when

$$p_i = 0 \text{ if } g_i / t_{Wi} < k_i / c_i$$
$$p_i = 1 \text{ if } g_i / t_{Wi} > k_i / c_i$$

- G the ratio of the total net amount of valuable info. gained
- T_B The total amount of time spent between-patches
- T_W The total amount of time spent within-patches foraging
- g The avg. gain per patch
- t_B The avg. time between processing patches
- t_W The avg. time to process patches

Information diet selection (there are not just one type of patches!)

Deriving by *p_i* yields

 $\frac{\partial R}{\partial p_i} = \frac{\lambda_i g_i c_i - \lambda_i t_{Wi} k_i}{(c_i + p_i \lambda_i t_{Wi})^2}$

The righthand-side of the equation is either >0 or <0, independent of p_i . Therefore maximization happens when

$$p_i = 0 \text{ if } g_i / t_{Wi} < \frac{k_i}{c_i}$$
$$p_i = 1 \text{ if } g_i / t_{Wi} > \frac{k_i}{c_i}$$

This is the profitability of "other" types acquired so far; which suggests a greedy* algorithm for diet selection (think about starting from the most profitable)

- G the ratio of the total net amount of valuable info. gained
- T_B The total amount of time spent between-patches
- T_W The total amount of time spent within-patches foraging
- g The avg. gain per patch
- t_B The avg. time between processing patches
- t_W The avg. time to process patches

Algorithm for optimal diet selection

Suppose that we can sort item types in terms of their profitability

 $\pi_1 > \pi_2 > \ldots > \pi_n$

Add item type k+1 from the most profitable to the least, **until** the rate of gain for a diet of k item types already added is greater than profitability of the $k+1^{st}$ type

$$R(k) = \frac{\sum_{i=1}^{k} \lambda_i g_i}{1 + \sum_{i=1}^{k} \lambda_i t_{Wi}} > \frac{g_{k+1}}{t_{Wk+1}} = \pi_{k+1}$$

- G the ratio of the total net amount of valuable info. gained
- T_B The total amount of time spent between-patches
- T_W The total amount of time spent within-patches foraging
- g The avg. gain per patch
- t_B The avg. time between processing patches
- t_W The avg. time to process patches

Graphical representation

Q. Which item types are chosen for optimal rate of gain?

References https://goo.gl/VsC2IK

[1] Pirolli, Peter, and Wai-Tat Fu. "SNIF-ACT: A model of information foraging on the World Wide Web." *International Conference on User Modeling*. Springer Berlin Heidelberg, 2003.

[2] Chi, Ed H. "Information seeking can be social." *Computer* 42.3 (2009): 42-46.

[3] Cutting, Douglass R., David R. Karger, and Jan O. Pedersen. "Constant interaction-time scatter/gather browsing of very large document collections." *Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval*. ACM, 1993.

[4] Anderson, John R. "A spreading activation theory of memory." *Journal of verbal learning and verbal behavior* 22.3 (1983): 261-295.
[5] Newell, Allen, and Stuart K. Card. "The prospects for psychological science in human-computer interaction." *Human-computer interaction* 1.3 (1985): 209-242.

[6] Anderson, John R., and Christian Lebiere. "The Newell test for a theory of cognition." *Behavioral and brain Sciences* 26.05 (2003): 587-601.

[7] Patterson, Karalyn, Peter J. Nestor, and Timothy T. Rogers. "Where do you know what you know? The representation of semantic knowledge in the human brain." Nature Reviews Neuroscience 8.12 (2007): 976-987.

[8] Huberman, Bernardo A., et al. "Strong regularities in world wide web surfing." *Science* 280.5360 (1998): 95-97.

[9] Card, Stuart K., et al. "Information scent as a driver of Web behavior graphs: results of a protocol analysis method for Web usability." *Proceedings of the SIGCHI conference on Human factors in computing systems*. ACM, 2001.

[10] Chi, Ed H., Peter Pirolli, and James Pitkow. "The scent of a site: A system for analyzing and predicting information scent, usage, and usability of a web site." *Proceedings of the SIGCHI conference on Human Factors in Computing Systems*. ACM, 2000.

[11] Pirolli, Peter, Evelin Wollny, and Bongwon Suh. "So you know you're getting the best possible information: a tool that increases Wikipedia credibility." Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2009.