
Tools

Brahm Prakash Mishra and John Sarracino

USER WORKPIECE

Cons
● Slow - every step requires

conception + execution time
● Industry grade machinery
● First and final - no undo

Pros
● User attention on

workpiece
● Interactive editing

Hands

Physical Feedback

Traditional Fabrication

USER CAD WORKPIECE

Cons
● Removes user from

workpiece
● Prevents interactive editing

Pros
● Fast iterations
● Precision
● Allows trial and error

Mouse/
Keyboard

Software
Screen

Rapid Prototyping

Existing Tools for Personal Fabrication

● 3D Printers, Laser Cutters, Ideal for rapid prototyping

● User input via CAD

● New lab setup in MAE

USER CAD WORKPIECE

Cons
● Analyse possible cons of

constructable, as a tool

Pros
● Retains desirable features of CAD
● Enables Interactive Editing
● Improves design process by

keeping user focus on workpiece

Mouse/
Keyboard

Software
Screen

Low Powered Laser

High Powered Laser - Executed cut

Constructable

Constructable: Interactive Construction

● Interactive editing has value for artists and designers

● Proposed system adds these benefits to technical projects

● Simultaneously satisficing requirements such as precision

● And improving prototyping speed

● Interactive fabrication Interactive construction

Demo

http://www.youtube.com/watch?v=8g3LaF9oVFY&t=210

Mechanism
● Different kinds of low powered, proxy lasers for input

● Each with its own set of constraints

● Camera reads the laser movement and processes

● Laser pointer movement retraced using a high powered laser

Impactful features

● Discussion: What was novel about the technique in the paper?

● Good interaction design with the proxy lasers, using physical objects as
reference.

● Ariel points out that cognitive load of user is reduced due to uniformity across
lasers.

● Immediately moved on to point out lack of user-evaluation data. - Faulty
generalization. - Dicto Simpliciter

Critique - Deconstructing the constructable
● Benefit of interactive editing for artists (and designers) - creative process

inspired by partially complete workpiece. Does this really extend to technical

projects? (Absence of user data) -Ex Falso Quodlibet

● Points out two defects of interactive fabrication - Slow editing, precision.

Claims constructable has ability to create functional mechanical devices (i.e,

satisfices precision) while maintaining immediateness of traditional interactive

editing devices. Slow editing - unresolved for most part.

● No quantitative measures of ‘precision’! - Reification

● Zhou -

Critique - Deconstructing the constructable

Critique - Deconstructing the constructable

Concerns with suboptimal designs

● Why exclusion of ANY form of display?
● Speed of prototyping - takes severe hit when user makes a mistake, VERY

common while prototyping

Concerns with feasibility

● What about the 3rd dimension that CAD offers? - Angelique
○ 3D printers are able to construct objects with depth definitions. The proposed machine can

only do 2D fabrications, since no mechanism

Verdict
Would you be looking to use Constructable over existing CAD software in
conjunction with a 3D Printer/Laser cutter

What audience do you think the tool is targeted at?

Past/Present/Future of UI Software Tools

● Reflective survey/insight paper by Brad Myers, 1999
(almost 20 years old)

● UI builder: a software library and/or graphical toolkit for
authoring UI view

Goals
1) Discuss the proposed criteria for evaluating UI builders:

2) Discuss current/future criteria for UI builders:

Context

● Researched in response to personal computing --
state-of-the-art solution was “write low-level code”

● Ubiquitous + context-aware computing were predicted but
not yet present

Discussion: If you were researching UIs in the 1990s, what
would you focus on? What other domains does this
problem resemble?

Goals
1) Discuss the proposed dimensions for evaluating UI builders:

a) The fundamentals: learning curve vs. quality of output UI
b) Predictability: is the UI builder’s result predictable from its input?

2) Discuss current/future criteria for UI builders:
a) Automatic specialization: one app for many systems
b) Modular interactivity: Toolkit support for different interaction modalities

The Fundamentals

Learning Curve

Quality of
Output UI

The Beamer quadrant:
Hard to learn, Low quality

The software library quadrant:
Hard to learn, High quality

The XCode views quadrant:
Easy to learn, High quality

The Google Docs quadrant:
Easy to learn, Low quality

Easy to learn, High quality

http://www.youtube.com/watch?v=gnKFZnPZewk&t=200

Hard to learn, Low quality

TK

Predictability
● A good authoring tool is predictable -- the author should be able to predict

the change an edit to the input will have on the output.
● There was a lot of research effort into high-level specifications for UIs:

○ Constraints: e.g. “dialog box X must be attached to gutter panel Y”
○ Formal Models: e.g. “Dialog box Z follows when Submenu item j in Menu item M is clicked”
○ Input/Output UI synthesis: e.g. “I need the system to take in a list of files and support view,

copy, and delete.”

● Discussion question: Why might high-level specifications be unpopular?

Why is this relevant today?
● UbiComp, cloud, and contextual computing are all here to stay.

● Discussion question: What are some fundamental issues for a UI developer
in the modern setting? Were UI builders designed to solve these problems?

● Current work: domain-specific UI builders (e.g. web applications, proof
assistants)

Goals
1) Discuss the proposed dimensions for evaluating UI builders:

a) The fundamentals: learning curve vs. quality of output UI
b) Generality: does the UI builder solve a relevant problem?

2) Discuss current/future criteria for UI builders:
a) Automatic specialization: one app for many systems
b) Modular Interactivity: Toolkit support for different interaction modalities

Automatic Specialization
● Currently, people use many different systems to access the same

application -- for example, an email client.
● It’s difficult and tedious to consistently author a UI for each system.
● High-level specs can help -- write one spec for each system, and one spec for

the app.

Modular Interactivity
● Desktop Interactivity was relatively simple -- UI builders supported it with a

set of primitives.
● Discussion question: In terms of Interactivity, how is UbiComp fundamentally

different from desktops? How is contextual computing different from
desktops?

● Discussion question: Can previous UI builder work on Interactivity handle
UbiComp? Contextual computing? Why or why not?

