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Peer and self assessment offer an opportunity to scale both assessment and learning to global classrooms.
This paper reports our experiences with two iterations of the first large online class to use peer and self
assessment. In this class, peer grades correlated highly with staff-assigned grades. The second iteration
had 42.9% of students grades within 5% of the staff grade, and 65.5% within 10%. On average, students
assessed their work 7% higher than staff did. Students also rated peers’ work from their own country 3.6%
higher than those from elsewhere. We performed three experiments to improve grading accuracy. We found
that giving students feedback about their grading bias increased subsequent accuracy. We introduce short,
customizable feedback snippets that cover common issues with assignments, providing students more qual-
itative peer feedback. Finally, we introduce a data-driven approach that highlights high-variance items for
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to 9.9%.
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1. INTRODUCTION
In the past year, hundreds of thousands of students have earned certificates in large
online classes—on topics from Databases to Sociology to World Music—and millions
have signed up [Lewin 2012a]. These classes, often called MOOCs, provide students
on-demand video lectures, often along with automated quizzes and homework, and
class forums that allow students to interact with each other.

Many such classes use automated assessment (e.g. [Widom 2012]), which precludes
the open-ended work that is a hallmark of education in creative fields like design [Bux-
ton 2007]. Furthermore, viewing and critiquing others’ work plays a key pedagogical
role in these domains [Schön 1985]. Fields like design have also traditionally relied on
intimate co-location to enable these activities and to confer values and norms [Schön

This work is supported by the Hasso Plattner Design Thinking Program and NSF CAREER award IIS-
0745320.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1073-0516/2013/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 4, Article 39, Publication date: March 2013.



39:2

1985]. However, in a global, online classroom, students lack the shared context coloca-
tion provides. How can we scale both evaluation and peer learning in creative domains
online?

One approach for scaling assessment and peer learning would be for students to
evaluate their peers’ work. Peer assessment potentially enables large classes to offer
assignments that are impractical to grade automatically. Furthermore, human grad-
ing more easily provides context-appropriate responses and better handles ill-specified
constraints [Hearst 2000]. But, do students have the motivation and expertise to per-
form peer assessment well? This paper reports on our experiences with the first use
of peer assessment in a massive online class. It is the largest use of peer assessment
to date. As of June 2013, this technique has since been adopted in many other classes,
including 79 MOOCs on the Coursera1 platform alone.

1.1. The design studio as an inspiration
For over a century, the studio has been a dominant model for architecture and de-
sign education, and has expanded into fields including product design [Lawson 2006],
HCI [Winograd 1990; Greenberg 2009], and software design [Tomayko 1991]. This pa-
per considers the studio as an inspiration for online design education.

The studio model of education was formalized in the École de Beaux-Arts [Drexler
et al. 1977]. Studios provide an open, shared environment for students to work. This co-
presence provides social motivation and facilitates peer learning through visibility of
work [Reimer and Douglas 2003]. Formal and informal studio critique helps students
iteratively improve their work [Schön 1985].

Public visibility of self and peer work provides students with a nuanced understand-
ing of design. In particular, seeing their peers’ work along with their own work through
its evolution allows students to understand decisions and tradeoffs both in their own
designs, and in those of their peers [Tinapple et al. 2013].

Formative studio feedback further engages students in reflective practice [Schön
1985]. Informal, formative feedback is often through oral critiques or “crits” by teach-
ers or other experts [Uluoglu 2000]. Such informal, qualitative feedback is essential,
because it encourages iterative practice [Cennamo et al. 2011]. Because crits are often
delivered in public, students also learn from observing peer work as well as by working
on their own [Dannels and Martin 2008].

Expert critiques also serve as summative assessment. Experts often assess design
based on trained but tacit criteria [Snodgrass and Coyne 2006]. Amabile et al demon-
strate that expert consensus is a reliable measure of the quality of creative work [Am-
abile 1982]. Their Consensual Assessment Technique asks experts to rate artifacts
on a scale, and provides no rubrics and does not ask raters to justify their rating.
Other techniques provide an assessment process to observe, interpret and evaluate
work [Feldman 1994].

The design studio suggests three requirements for successful design education on-
line. First, it must support open-ended design work with multiple correct solutions.
Such work is especially important in design education because successful design often
requires generating and reflecting on multiple ideas [Tohidi et al. 2006; Buxton 2007],
and on exploration and iteration [Fallman 2003]. Second, assessment must allow stu-
dents to learn the tacit criteria of good design. Criteria for good design are often not
explicitly defined [Forlizzi and Battarbee 2004]. For instance, interactive interfaces
may be subjectively evaluated for whether they are learnable and appropriate [Alben

1https://www.coursera.org/
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1996], criteria that require tacit interpretation. Third, assessment must provide stu-
dents both qualitative formative feedback, and summative feedback.

1.2. The promise of peer assessment
The inherent variability of open-ended solutions, and lack of defined evaluation crite-
ria for design makes automatically assessing open-ended work challenging [Bennett
et al. 1997]. In addition, automated systems frequently cannot capture the semantic
meaning of answers, which limits the feedback that they can provide to help students
improve [Bennett 1998; Hearst 2000].

Therefore, open-ended assignments generally rely on human graders. The time-
intensive, personalized assessment of grading sketches, designs, and other open-ended
assignments requires a small student-to-grader ratio [Hsi and Agogino 1995; Stanley
and Porter 2002]. This staff effort is prohibitive for large classes: staff grading simply
doesn’t scale.

Peer and self assessment is a promising alternative, with potential additional ben-
efits. It not only provides grades, it also importantly helps students see work from an
assessor’s perspective. Peer feedback in design classes also creates an audience that
provides honest feedback and multiple perspectives [Tinapple et al. 2013]. Evaluat-
ing peers’ work also exposes students to solutions, strategies, and insights that they
otherwise would likely not see [Chinn 2005; Tinapple et al. 2013]. Similarly, self as-
sessment helps students reflect on gaps in their understanding, making them more
resourceful, confident, and higher achievers [Zimmerman and Schunk 2001; Pintrich
1995; Pintrich and Zusho 2007] and provides learning gains not seen with external
evaluation [Dow et al. 2012].

Peer assessment can increase student involvement and maturity, lower the grad-
ing burden on staff, and enhance classroom discussion [Boud 1995]. Peer assessment
has been used in colocated classroom settings for many different kinds of assign-
ments [Topping 1998], including design [De La Harpe et al. 2009; Tinapple et al.
2013]. programming [Chinn 2005] and essays [Venables and Summit 2003]. How can
we make this classroom technique scale to a large online class?

1.3. Scaling peer assessment
In-class peers can assess each other well [Falchikov and Goldfinch 2000; Carlson and
Berry 2003; Gerdeman et al. 2007]. To effectively scale peer assessment, we can learn
several lessons from crowdsourcing [Surowiecki 2005]. First, crowdworkers perform
better when they are intrinsically motivated by the task’s importance [Cheshire and
Antin 2008]. Second, consensus among raters serves as a useful indicator of qual-
ity [Huang and Fu 2013]. Third, interfaces like FoldIt [Khatib et al. 2011] and NASA
Clickworkers [Szpir 2002] demonstrate that short, well-crafted training exercises can
enable legions of motivated amateurs to perform work previously thought to require
years of training.

Massive online classes provide a valuable living lab [Chi 2009; Carter et al. 2008]
for exploring peer-sourcing approaches, and our hope is that peer-sourcing insights
from massive classes will contribute techniques that apply more broadly. These peer-
sourced systems introduce new challenges and opportunities beyond crowdsourcing.
For example, students using peer assessment both create the work to be assessed and
perform the assessment. One theme this paper will explore is the learning benefits
that arise from those dual roles.

1.4. Contributions
This paper reports on our experiences with peer assessment over two iterations in the
first large-scale class to use it (http://www.hci-class.org). Since our adaptation of peer
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assessment to MOOCs, variations of the system described here have since been used in
dozens of other large online classes, including Mathematical Thinking, Programming
Python, Listening to World Music, Fantasy and Science Fiction, and Sociology.

Over both iterations of the class, 5876 students submitted at least one assignment
and participated in peer assessment. Overall, the correlation between peer grades and
staff assigned grade was r = 0.73, and the average absolute difference between peer
and staff grades was 3% (positive and negative errors were approximately balanced).

In end-of-course surveys, students reported both receiving peer feedback and per-
forming peer assessment to be valuable learning experiences. On a seven-point Likert
scale, the median rating was 6 (7=very valuable). Surprisingly, 20% of students volun-
tarily assessed more submissions than required.

We explored several techniques to improve assessment accuracy and encourage qual-
itative feedback. First, we found that giving students feedback about whether they
scored peers high or low increased their subsequent accuracy. A between-subjects ex-
periment found a 0.97% decrease in mean error (6.77% in the experimental group, vs.
7.74% in the control group). Second, to help students provide peers with high-quality
personalized feedback, we introduce short, customizable feedback snippets that ad-
dress common issues with assignments. 67% of students obtained open-ended peer
feedback using this method. Third, we introduce a data-driven approach for improv-
ing rubric descriptions. We distinguish items with high student:staff correlation from
those with low correlation, and observed the ways they differ to improve the low-
correlation ones. After making these changes, the mean error on grades decreased
from 12.4% to 9.9%.

2. THE ANATOMY OF A LARGE SCALE ONLINE CLASS
This online class is an introduction to human-centered interaction design. The class is
offered free of charge, and is open to any interested student. Material covered in class
is based on an introductory HCI course at Stanford University. Over the class duration,
students watch lectures, answer short quizzes and complete weekly assignments. In a
typical week, students watch four videos of 12-15 min each. Videos total approximately
450 minutes across the class, and contain embedded multiple choice questions.

Multiple choice quizzes tested students’ knowledge of material covered in videos.
Most significantly, students completed five design assignments. Each assignment cov-
ered a step in a course-long design project where students design a Web site inspired
by one of three design briefs (Figure 1).

Students who complete the course with an average assignment score of 80% or above
earn an electronic “Statement of Achievement” for a Studio track (but no university
credit). 501 students earned this statement in the first iteration, and 595 did in the
second. 1,573 received a statement of achievement for the Apprentice track compris-
ing watching videos and quiz performance in the first iteration, and 1,923 did in the
second.

2.1. By the numbers
Similar to other online classes [Lewin 2013a], the online HCI class attracted numer-
ous and diverse participants. 30,630 students watched videos in the first iteration,
and 35,081 did in the second (32.5% of students in each iteration were female). 55% of
students reported they had full time jobs (in both iterations). The median age range
in both iterations was 25 − 34, with a broad spread (Figure 2). In both iterations,
students from 124 countries registered for the class and roughly 71% were from out-
side the United States. Students transcribed lectures in 13 languages: English, Span-
ish, Brazilian Portuguese, Russian, Bulgarian, Japanese, Korean, Slovak, Vietnamese,
Chinese (Simplified), Chinese (Traditional), Persian, and Catalan.
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Fig. 1. Example prototypes from student projects in the online class (top: early prototype of a social dining
app; bottom: a tracker for professional certification at the end of class).

In all, 2,673 students submitted assignments in the first iteration, and 3,203 in the
second (Figure 3). The second iteration also allowed students to submit assignments
in Spanish; 223 students did so. Student questions were answered exclusively through
the online class forum. Across the course, the forum had 1,657 threads in the first
iteration, and 2,212 in the second.
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Fig. 2. Online classes attract students who cannot use traditional universities, such as those working full-
time. The age distribution of the class is remarkably similar across both iterations. (a) Spring 2012 (iteration
1), 10190 participants, (b) Fall 2012 (iteration 2), 17915 participants.
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Fig. 3. Number of students who submitted each assignment.

2.2. Assignments
All assignments were submitted online, and graded with calibrated peer assessment.
Some assignments asked students to create physical artifacts like paper prototypes
and upload photographs of their work.

Each assignment included a rubric that described assessment criteria [Andrade
2005]. Rubrics comprised guiding questions or dimensions that student work was
graded on, and gradations of quality for each dimension, from poor to excellent. Rubrics
were released with the assignment, so students could refer to them while working. Ta-
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ble I shows a part of the rubric for the User Testing assignment, another rubric is
shown in Table V2.

Peers assessed using the rubric, and students were informed that peers could see all
submitted work while grading. Students could also share their peers’ work via class
forums after grading was complete and staff used examples of student work in class
announcements and lectures. Students could optionally mark their submissions as pri-
vate to prevent such sharing outside the peer assessment system: over both iterations
combined, 13.5% of students chose to do so.

All assignments and rubrics were based on corresponding materials from the intro-
ductory HCI class at Stanford3. The in-person Stanford class uses self assessment and
staff grading, but not peer assessment.

2.3. Peer Assessment
Assessment used Calibrated Peer Review [Carlson and Berry 2003]. Calibrated peer
review helps students learn to grade by first practicing grading on sample submissions.

Immediately after each submission deadline, staff evaluated about a dozen
submissions– eight were used to train students; the rest were used to estimate accu-
racy of assessment. The next day, peer assessment opened for students who submitted
assignments. Students had four days to complete peer assessment.

Peer grading for each assignment had two phases: calibration and assessment. Dur-
ing the first, calibration, phase, students see the staff grade for a submission they
grade, along with an explanation. If the student and staff grades are close, students
move to the assessment phase. Otherwise, students grade another staff-graded assign-
ment. This process is repeated until student and staff grades match closely, with up to
five such training assignments. After five submissions, students moved to the assess-
ment phase regardless of how well they matched staff grades.

Then, students assessed five peer submissions. Unbeknownst to the students, one
submission was also graded by staff to provide a measure of assessment accuracy. By
symmetry, this means that at least four randomly-selected raters saw each student’s
submission, and that each student saw one staff-assessed submission per assignment.
Immediately after assessing peers, students assessed their own work. Self assessment
and peer assessment used identical interfaces.

Time spent on assessment varied by assignment. Depending on assignment, 75% of
assessments were completed in less than 9.5 minutes to 17.3 minutes. On the median
assignment, 75% of assessments took less than 13.1 minutes4.

One pedagogical goal of the class was to have students understand and have some
influence on their grades. At the same time, we didn’t want to reward dishonesty or
delusions. To balance these goals, when the self-assessed score and the median peer
score differed by less than 5%, the student got the higher score. If the difference was
larger, the student received the median peer-assessed score. This policy acknowledges
5% to be a margin of error and gives the student the benefit of doubt. Peer grades were
anonymous; students saw all rater-assigned scores, but not raters’ identities. Similarly,
submitters’ names were not shown to raters during assessment, i.e. the assessment
system was double-blind.

Because assignments built on each other, it was especially important to get timely
feedback. Grades and feedback were released four days after the submission deadline

2All assessment materials are also available in full at http://hci.st/assess
3https://cs147.stanford.edu/
4Times for the lower 75% of submissions provide an approximate upper bound to the grading burden. We
use the lower 75% to exclude assessments that weren’t completed or ones completed over multiple log-in
sessions.
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(the subsequent assignment was due at least three days after students received feed-
back). Students who didn’t complete either the self assessment or peer assessment by
grade-release time were penalized 20% of the assignment grade. Students were allowed
to assess more than five submissions if they wanted to (Figure 7 shows the distribution
of assessments completed). These additional submissions were also chosen randomly,
exactly like the first five submissions.

3. HOW ACCURATE WAS PEER ASSESSMENT?
3.1. Methods
To establish a ground-truth comparison of self and staff grades, each assignment in-
cluded 4 to 10 staff-graded submissions in the peer assessment pool (these were ran-
domly selected). Across both iterations, staff graded 99 ground-truth submissions. Each
student graded at least one ground-truth submission per assignment; a ground-truth
assignment had a median of 160 assessments. (Some students graded more than one
ground-truth submission per assignment because the system would give them a fresh
ground-truth assignment when they logged-out without finishing assessment and re-
turned to the website after a long time).

This paper’s grading procedure assigns the median grade from a small number of
randomly selected peers (e.g. 4-5). We evaluated the accuracy of this grading process
using the 99 assignments with a staff grade. To simulate the median-grade approach,
we randomly sampled (with replacement) five student assessments for each ground-
truth submission, and compared the sample’s median to the staff grade5. We present
results for 1,000 samples of five assessments per submission. This sampling method is
essentially a bootstrapped statistical analysis [Efron and Tibshirani 1993]. It allows
staff to only evaluate a small set of randomly selected submissions, and still provides
an estimate for every peer-rater’s agreement with their grade (since all peers see at
least one staff-graded submission.) Repeatedly sampling five grades from the pool of
peer grades provides an approximate distribution of agreement between staff and peer
grades.

We also compared students’ self grade with their median peer grade to measure
whether students rate themselves differently than their peers.

To enable comparisons, we present results for both iterations separately. The second
iteration of the course had grading rubrics improved using data from the first iteration
(discussed in Section 6.1). The general similarity in accuracy across both iterations
(with improvements in the second) suggests that the peer assessment process produces
robust results. The second iteration also allowed students to submit assignments in
Spanish. For consistency, our analysis does not include those submissions.

At the end of the class, students were invited to participate in a survey; 3,550 stu-
dents participated in all. Participation was voluntary, students were not compensated,
and the survey did not count towards course credit.

3.2. Results: Grading agreement
Here, we present percentage differences between peer and staff grades (summarized
in Table II). Most assignments in this class were out of 35 points. Therefore, a 5%
difference represents 1.5 points (grades could only be awarded in multiples of half a
point).

For the first iteration, 34.0% of submissions had a median peer grade within 5% of
the staff grade, and 56.9% within 10% (Figure 4). The second iteration improved to
42.9% within 5% of the staff grade, and 65.5% within 10%. In the first iteration of

5Staff comprised graduate students from Stanford. The second iteration had Community TAs chosen among
top-performing students in the previous iteration in addition to Stanford staff.
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Fig. 4. Accuracy of peer assessment for submissions that were graded independently by teaching staff and
peer assessors (all five assignments). Graph accuracy of random sample of 5 graders against staff.

Table II. Summary of grade agreement. In the second iteration of the
class, peer-staff agreement increased, while peer-self agreement de-
creased.

Metric Iteration 1 Iteration 2
Peer-staff agreement (within 5%) 34.0% 42.9%
Peer-staff agreement (within 10%) 56.9% 65.5%
Peer < Staff 48.2% 36.0%
Peer > Staff 40.2% 46.4%
Peer-self agreement (within 5%) 28.7% 24.0%
Peer-self agreement (within 10%) 44.9% 40.6%

the class, 48.2% of samples had a peer median lower than staff grade, 40.2% had it
higher. The second iteration had 36% of samples had a peer median lower than staff
grade, 46.4% had it higher. Students tended to get better at grading over time (See
Section 3.8).

In the first iteration of the class, 28.7% of submissions had their median peer grade
within 5% of the self-assessed grade, and 44.9% within 10% (Figure 5). The median
submission had a self grade 6% higher than the median peer grade. In the second iter-
ation, 24.0% of submissions had their median peer grade within 5% of the self-assessed
grade, 40.63% had the median peer-grade within 10%. The median submission had a
self-grade 7.5% higher than the median peer grade. (We discuss possible reasons for
this lowered agreement in Section 6.3.)

3.3. Results: Grading agreement between staff
The first two iterations of the class had only one staff member grading each ground-
truth submission. To get an idea of how well staff grades agree amongst themselves,
in the third iteration of the class we asked multiple staff members to rate each sub-
mission.

Submissions were randomly assigned to three staff members (there are six staff
members in all). Staff rated 50 submissions over the course.

For these submissions, the average disagreement between staff raters (defined as
the median difference between a staff grade, and the mean staff grade) was 6.7%. 28%
of submissions had all staff grades within 5% of the assignment grade, and 42% within
10%. In contrast, over the second iteration of the class, the average disagreement be-
tween peer raters was 25.0%. Only 4.0% of submissions had all peer grades agreeing
within 5%, and 16.9% within 10%.
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Fig. 5. (a) Comparison of median peer grades against self grades. In the first iteration 28.7% of such samples
were within 5% of the staff grade, and 44.9% within 10%. (b) Same graph for second iteration of the class.
24.0% of such samples were within 5% of the staff grade, and 40.63% within 10%.
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Fig. 6. Agreement of self and staff grades in an in-person class.

These results suggest that correlation amongst staff grades is many times higher
than agreement amongst peer raters. They also suggest that aggregating peer grades
leads to a remarkable increase in agreement with staff grades (Section 3.2).

Staff differences in grading were usually due to differing judgments or interpreta-
tion. For example, an early assignment asked students to create storyboards of user
needs without constraining to a particular design. Staff members differed in how con-
straining they thought storyboards were.

Such differences suggest the inherent limitations of independent assessment via
rubrics due to differences in judgment. Consensus-based mechanisms that encourage
sharing perspectives may improve agreement [Amabile 1982].

3.4. Comparison to in-person classes
These accuracy numbers also compare well to accuracy in in-person classes. The Fall
2012 version of the in-person class (cs147) that this class is based on used self assess-
ment, but not peer assessment. The in-person class had 32.8% of submissions with a
self grade within 5% of staff grade, and 60.8% of submissions within 10% (Figure 6).
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Fig. 7. Average number of submissions assessed per assignment (both iterations). Students were required
to assess five, and 20% of students evaluated more than required.

3.5. Results: Student reactions

to see other
how other people
see how other(s)
other’s work/other people’s

114

points of view
point of view

36

compare my work 12
helped me understand 12

(a) “In what ways was assessing oth-
ers’ work useful?” Students frequently men-
tioned being inspired by others work, finding
example work to critique, and seeing different
points of view.

my own work
your own work

175

compare my work
I could compare

50

I didn’t
I did not

31

what I did 19
point of view 15

(b) “In what ways was assessing your
own work useful?” Students frequently
mentioned gaining a new perspective on revis-
iting their work (after peer assessment), com-
paring their work to peers’, and better identi-
fying their mistakes.

Fig. 8. The most frequent trigrams (three word phrases) in students’ self-report (over both iterations of
class): Students reported both peer and self assessment to be valuable for different reasons.

Student reactions to the peer assessment system were generally positive, and 20% of
students completed more peer assessments than the class required them to (Figure 7).
We infer from this that students found rating their peers valuable or enjoyable, and/or
they believed it would help their peers.
42% of students cited seeing other students’ work as the biggest benefit of peer as-

sessment, 31% reported learning how to communicate their ideas as a benefit. Stu-
dents reported both self assessment and peer assessment to be valuable, and that they
played different roles. Evaluating peers was useful for inspiration and to see other per-
spectives. Self assessment provided students an opportunity to look at their own work
again, and encouraged comparing it with others’ work they had assessed. It was also
useful for identifying mistakes and reflection (Figure 8). Overall, students reported
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Table III. End course survey results (n=3,550) about student perceptions on peer as-
sessment. Students reported learning from assessing others’ work than their own,
and putting effort into grading fairly.

Learned from assessing your
own work? (Nothing. . . A lot)

3.1 7.1 12 19.9
31.1 26.7

0

50%

Nothing A lot

Learned from assessing others’
work? (Nothing. . . A lot) 0.9 2.4

7.7
15.6

30

43.4

0

50%

Nothing A lot

The peer assessment process
was easy to understand (Dis-
agree. . . Agree)

2.1 3.7 7.6 13.2 20.4 27.5 25.6

0

50%

Disagree Agree

I assessed myself fairly and ac-
curately (Disagree. . . Agree) 1.2 1.4 2.2

12.6 14.3

35.2 33.1

0

50%

Disagree Agree

I put sufficient effort into grading
peers (Disagree. . . Agree) 1.2 2 5.5 10.8

20.6
35.5

24.4

0

50%

Disagree Agree

Peers put sufficient effort into
grading me (Disagree. . . Agree)

5.9 8.1 13.6
26 21.3 18.2

7
0

50%

Disagree Agree

My peer graders did not
understand my work (Dis-
agree. . . Agree)

14.6 18.5 15.9
26.6

12.8 7.7 3.8
0

50%

Disagree Agree

Rubrics helped me under-
stand exactly what assign-
ments required me to do.
(Disagree. . . Agree)

1.7 3.3 7.5

33.3
24.3 20

10

0

50%

Disagree Agree

learning more by assessing their peers than by assessing themselves: mean ratings
were 4.97 and 4.51 respectively for peer and self assessment (6-point Likert scale, 6:
“agree strongly (sufficient effort)”), on a Mann-Whitney U-test U = 580, 562, p < 0.001.

However, students also reported that they felt their peers put in less effort into
peer assessment than they did (Table III). On a Mann-Whitney U-test, mean ratings
were 4.57 for peer-effort and 5.46 for their own effort (6-point Likert scale, 6: “learnt a
lot”), U = 610, 728, p < 0.001. Reasons for this bias are probably similar to the illusory
superiority effect [Ehrlinger et al. 2008]. Designing peer assessment interfaces that
emphasize reciprocity and minimize this bias remains future work.

3.6. Does a different weighting of peer grades help?
Using the median of peer grades is simple, easily explainable, and robust to outliers.
Would a different weighting of peer grades more accurately mimic staff grades?

Method: To find the best linear combination of weights, we built a linear regression
on the staff grade with five peer grades in increasing order as the predictors, and with
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Fig. 9. Increasing the number of raters quickly yields diminishing returns.

no intercept. This regression seeks weights on peer grades that maximally predict the
staff grade.

Results: The best linear regression doesn’t materially improve accuracy. The linear
model weighted the five peer grades from lowest to highest at 15.6%, 13.6%, 21.3%,
27.6%, 18.3%. Holding out 10% of ground truth grades, and testing on samples drawn
from them, the regression model yields an accuracy of 35.8% of samples within 5%, and
58.8% within 10%. In contrast, using the median yields an accuracy of 35% of samples
within 5%, and 58.7% within 10%.

Similarly, the arithmetic mean, geometric mean, and a clipped arithmetic mean
(that only considers the middle three grades) all do worse than the median. In addi-
tion, errors are approximately evenly spread across the median, so adding a constant
correction term to the median grade does not significantly improve accuracy either.

In summary, the simple median strategy seems to be surprisingly effective at iden-
tifying the most plausible grade. Is this accuracy sufficient? For a class with letter
grades, greater accuracy is needed (because currently about 40% of assignments are
a full letter grade away). However, a student’s grade for the entire course is generally
more accurate due to positive and negative errors canceling out. Using repeated sam-
pling, we estimate more than 75% of students got a course grade within 5% of staff
grade (assuming grades in different assignments are uncorrelated). Consequently, for
a pass/fail class (such as many current MOOCs, including ours), this accuracy is suffi-
cient for the vast majority of students. We estimate that less than 45 students (approx.
6%) were affected by grading errors in each iteration of the class.

3.7. Would more raters help?
Increasing the number of raters per submission helps accuracy, but quickly yields di-
minishing returns (Figure 9). A large number of students rated staff-graded assign-
ments. These allow us to simulate the effect of having more raters. Increasing the
number of assessments per submission from 5 to 11 increases the number of assign-
ments that were graded within 5% of the staff grade by 3.8%, and those graded within
10% by 3.6%. Increasing the number of assessments to an (unreasonable) 101 per sub-
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mission increases the number of submissions graded within 10% of the staff grade by
8.1%.

3.8. Do students become better graders over time?
Agreement of peer grades with staff grades generally increases across the class. This
increase is seen both for the class as a whole, and for students who submit all assign-
ments, i.e. excluding students that drop out. This suggests that, regardless of indi-
vidual differences in perseverance and motivation, familiarity and practice with peer
assessment leads to more accurate assessments.

Using the repeated sampling scheme described in Section 3.1, five assignments had
26.4%, 36.2%, 36.9%, 43.9%, and 36.8% of submissions estimated within 5% of the staff
grade. Within a 10% range, the assignments had respectively 49.1%, 53.6%, 60.9%,
68.5%, and 64.3% within 10% (Figure 10(a)). If we only consider raters that finished
the class (and exclude those that dropped out), we see that staff agreement increases
as well. The five assignments in order had 23.7%, 29.4%, 38.4%, 39.5%, 37.1% within
5% of staff, and 47.4%, 63.8%, 61.8%, 63.3%, 64.2% (Figure 10(b)). Note that both
these numbers are based on repeated sampling from a smaller number of staff-graded
assignments. As such, they are more susceptible to variations in staff grades for a
particular submission.

3.9. What is the right granularity of grades?
Sections 3.3 and 3.4 shows that the grading agreement between staff members, and
between staff and students in an in-person class are similar. These differences may
approximately represent the smallest discernible differences in quality.

Recall that a 5% difference in grades is 1.5 points in a 35 point assignment, i.e., three
times a “just-noticeable” difference in quality (0.5 points, the minimum granularity of
grades). Indeed, the in-person version of the class adopted the current 35 point grading
scheme (replacing its 100 point scheme from prior years) to better balance accuracy
with meaningful differences in quality.

3.10. “Patriotic” grading?
On average, raters grade students from their own country 3.6% higher than those from
other countries: t(27067) = 3.98, p < 0.001. This effect is consistent when the raters and
submitters from the largest student enrollment (United States) are removed, but is
smaller (the mean difference drops to 1.98%, t(12863) = 2.0, p < 0.05). We remind the
reader that grading was double-blind, so raters did not see the names of submitters.

We see four possible explanations for this “patriotism” bias. One is that raters bet-
ter understood applications designed for their local environment and so rated them
more highly. Another is that raters were “voting” for applications that they inferred
were from the same country – by the content of the application or the style of the
presentation. A third possible explanation is that different cultures consider differing
attributes of design, as in Kim and Hinds’ work on cross-cultural creativity [Kim and
Hinds 2012]. Finally, assessment materials may be understood by students in different
countries in subtly different ways. Understanding this effect remains future work.

4. PROVIDING STUDENTS FEEDBACK ON GRADING ACCURACY IMPROVES SUBSEQUENT
PERFORMANCE

So far, this paper has characterized the accuracy of large-scale calibrated peer assess-
ment. This section explores a feedback intervention to improve graders’ accuracy. Prior
work has demonstrated that feedback improves the quality of crowd work [Dow et al.
2012], but can it help raters overcome their (possibly unintentional) grading bias?
This section describes an experiment that provided students feedback whether they
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(b) Only raters who finished the class

Fig. 10. Agreement of median peer grades and staff grades across different assignments. (These agreement
distributions are more susceptible to variations in staff grades for a particular submission because they are
based on repeated sampling from a smaller number of staff-graded assignments.)

were grading either “too high,” “too low,” or “just right,” based on how well their grade
agreed with staff grades for the previous assignment. We hypothesized that providing
students grading feedback would help improve accuracy. We conducted a controlled ex-
periment on the course website that measured the impact of this feedback on accuracy.

4.1. Participants and setup
We randomly sampled 756 participants from students who had completed the second
assignment of the second iteration of the class.

The between-subjects experimental setup had two conditions: a no-feedback control
condition where students received no feedback on the accuracy of their grading, and
a feedback condition that provided feedback on their grading bias: too high, too low,
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Fig. 11. In the feedback condition, students received feedback about how well they were grading.

Fig. 12. Students improved grading when provided accuracy feedback.

or just right (Figure 11). To generate bias feedback, the system compared the partic-
ipant’s rating and the staff rating of the previous assignment’s ground-truth submis-
sion. If the rating differed by more than 10%, then feedback was shown as too high/too
low; otherwise the feedback was “just right.” In the feedback condition, high/low/just-
right feedback appeared just above the grading sheet (Figure 12). In the control condi-
tion this space was blank.

4.2. Results: Feedback reduces grading errors
Using a repeated sampling analysis (as in Section 3), we compared staff grades to a
random sampling of peer grades from participants in each condition for ground-truth
submissions. The difference between the median peer grade obtained by sampling from
the feedback condition and the staff-grade was 6.77%, compared to 7.74% in the no-
feedback condition (Figure 13). We built a linear model that predicts grading error
using experimental condition as fixed effect, and each rater as a fixed-intercept random
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Fig. 13. Feedback on grading accuracy reduced the overall error in assessment and made the range of errors
smaller.

effect. The effect of the presence of feedback is significant: t(4998) = −3.38, p < 0.01.
4.4% more samples in the feedback condition obtained a grade within 5% of the staff
grade than those without feedback. Notably, 55 students left comments expressing
their appreciation or receptiveness to this feedback; none expressed resentment.

This experiment tested the mere presence of accuracy feedback. Future work can
assess the effects of richer feedback, such as the amount of bias or change over time. It
can also explore bi-directional communication between the submitter and the assessor.

5. PROVIDING PERSONALIZED, QUALITATIVE FEEDBACK ON ASSIGNMENTS
Accurate, actionable feedback helps students improve their work [Nicol and
Macfarlane-Dick 2006; Boud 2000]. Actionable feedback is most useful if it is person-
alized, and targets the student’s recent work [Gallien and Oomen-Early 2008].

Rubrics provide feedback through quality gradations for each dimension. For in-
stance, students can look at rubric items they did poorly on to find areas for improve-
ment. However, using rubric item scores as feedback has two important limitations.
First, students must reflect on why they did poorly on some topic. Unfortunately, these
are often topics the student understood poorly in the first place. Second, rubrics only
point out areas for improvement, not how to improve.

Can peers provide actionable, personalized feedback? We introduce one method that
captures broadly applicable yet specific feedback in short snippets. On the assessment
form, raters select which snippets apply to the current assignment, and optionally fill
in a “because. . . ” prompt (Figure 14). Inspired by [Dow et al. 2010], we call the result
“fortune-cookie feedback” for its brevity and general applicability. Table IV shows some
examples.

Table IV. Example “fortune cookie” feedback

Assignment Fortune cookie
Needfinding Brainstorm more diverse user needs.
Needfinding Brainstorm more specific user needs.
Needfinding Develop more specific point of view [for proposed

solution to need]
User testing plan Clarify the concerns, goals, and expectations of

the user tests.
User testing plan Make the prototype more interactive so the user

test represents a more real-life interaction.
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Copy, then paste

}
Make the prototype more interactive so the user test represents a more real-life interaction: The prototype does everything 
you're testing, but it couldn't hurt to make it more interactive. If the user can't possibly stray from the things you want to test, 
how do you know that the user can actually use the full application without making mistakes?

Fig. 14. Students copied snippets of feedback (fortune cookies), pasted them in a textbox and optionally
added an explanation.

5.1. Methods: Creating fortune cookies
We wanted fortune cookies to help with two common patterns in student performance.

First, we wanted to find places where committed students did poorly, and retroac-
tively generate useful advice. To find committed students (and keep the number of
submissions manageable), we restricted our analysis to students whose initial perfor-
mance was above the 90th percentile. Then, we compared students who subsequently
got the median grade to those that got grades above the 90th percentile.

Second, we wanted to highlight strategies that students used to improve. We com-
pared submissions from students that improved their performance from median grade
to excellent (above 90th percentile) on a subsequent assignment against those that
obtained median grades on both assignments.

We then manually wrote feedback for each submission separately. For each assign-
ment, we looked at an average of 15 submissions, five each that showed improved,
reduced and steady performance. Combining related feedback from different submis-
sions led to our final list of warning signs and improvement strategies. Creating for-
tune cookies took a teaching assistant 3-4 hours per assignment.

We created fortune cookies based on submissions in the first iteration of the class,
and tested them in the second iteration. As the last question on the grading sheet, we
asked “which of these suggestions would improve this submission the most?” Students
copied appropriate fortune cookies from a list and pasted it in to a textbox below. Stu-
dents were not required to use these snippets for feedback—they could type in their
feedback into the textbox as well.

5.2. Results: How well do fortune cookies work?
Overall, 36.2% of assessments included feedback (compared to 36.4% in the previous
iteration without cookies). A chi-square test on the number of assessments that con-
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Fig. 15. Most students received at least one piece of textual feedback. Most fortune cookie feedback was
personalized

tained feedback suggests that fortune cookies do not encourage more students to leave
feedback (χ2 = 0.1, p = 0.75). Because submissions were assessed by multiple students,
94.9% of submissions received at least one piece of written feedback (compared to 83%
without cookies); 67.2% of students received at least one “fortune cookie”; and 65% of
students received one or more fortune-cookies with a “because. . . ” explanation (Fig-
ure 15).

Raters typed the same amount of feedback whether or not an assignment contained
fortune cookies. If we subtract the text of the cookie itself, there was no significant
difference in comment lengths whether or not cookies were used (t(10673) = 0.44, p >
0.6). If the text is included, comments that used fortune cookies were longer (t(10673) =
3.61, p < 0.05). This suggests that students expend the same amount of effort writing
feedback, and using fortune cookies allows this effort to be used to add to the fortune
cookie text.

5.3. Discussion
Reusable pre-canned prompts encourage students to direct their effort to providing
feedback beyond the cookie text. While we do not demonstrate this improves feedback
in the current article, we see three reasons why fortune cookies may provide better
quality feedback than non-cued feedback. First, providing raters a list of potential
feedback items changes a recall/identification task into a recognition task. This reduces
the cost of giving feedback [Anderson and Bower 1972; Nielsen 1994]. Second, show-
ing a list of common, assignment-specific problems that the submission could have
potentially reduces inhibition, and encourages peers to think critically [Galinsky and
Moskowitz 2000]. Third, because fortune cookies sometimes used terminology learned
in class, they may have triggered cued-recall of these concepts [Little and Bjork 2012],
leading to more conceptual comments.

Future research could investigate this idea further. In addition, it could also explore
if fortune cookies confer differential benefits to different students and how best to
leverage this.

6. OVERALL DISCUSSION
6.1. Using data to improve assessment materials
Iterative design often pays big dividends [Nielsen 1993], and assessment systems are
no exception. The large scale of online classes allows data-driven iterative improve-
ments of classroom materials in ways that small classes may not. Below, we describe
some data-driven changes we made.
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Assignment 3: Deadlines
Assignment 2: Storyboard2
Assignment 2: Storyboard1

Assignment 2: Prototype2
Assignment 2: Prototype1

Assignment 2: Point of View
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Fig. 16. Comparing variance of rubric items can help teaching staff find areas that may need improvement.
For example, this figure shows the variance for four assignments of the HCI course between staff grade and
median peer grade. A narrow, dense band indicates higher agreement. For example, Assignment 4 (blue) has
generally higher agreement.

One can use low rater agreement to find questions that might benefit from revisions.
We found that peer and staff raters agreed far more on some questions than others
(Figure 16), and that questions with low staff agreement also had low peer agreement
(r = 0.97, t(24) = 19.9, p < 0.05). We reviewed such questions and revised them with
feedback from the forum. Most rubric revisions centered around making rubrics more
easily readable.

Improving readability: Some rubrics sometimes used a non-parallel grammatical
structure across sentences. This is not uncommon: even examples in prior work on us-
ing rubrics suffer from this problem (e.g. [Andrade 2005]). We hypothesized that using
a parallel sentence structure would better help students understand conceptual differ-
ences [Markman and Gentner 1993]. We found that rubric items with parallel sentence
structure in the first iteration had lower disagreement scores (F (1, 39) = 2.07, p < 0.05)
(Figure 17). We revised all rubrics to use parallel sentence structure. We also made
other changes to improve readability, such as removing duplicate information from as-
signments, and splitting up rubric items that asked students to make a complex judg-
ment (e.g. “Is the prototype complete and functional?” to “Is the prototype complete?”
and “Is the prototype functional?”).

Word Choice: Although the rubrics had been revised for three years in the in-
person class, many forum posts asked for clarifications of ambiguous words. Words
like “trivial”, “interesting”, “functional”, and “shoddy” may be correctly interpreted by
the on-campus student with a lot of shared context, but are ambiguous online. The re-
vised version replaces these words with more specific ones (which may help on-campus
students as well).
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Fig. 17. In iteration 1, questions with parallel structure had lesser disagreement, both amongst peer
graders, and between the median grade and the self-assessed grade. We changed all assignments to use
parallel structure across rubric items.
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Fig. 18. Students in the second (Fall 2012) iteration of the class reported a self grade > 5% higher than
peer grade more frequently, and so got their self grade less frequently.

The revised rubrics were used in the second iteration of the class. Overall, the peer-
staff agreement was 2.5% higher than the previous iteration.

6.2. Going beyond pass/fail
Peer assessment as described in this paper works reasonably for a pass/fail class. How
might peer assessment be used in classes that award more fine-grained grades? Be-
yond having iteratively-refined rubrics (as above), one possibility is to involve com-
munity TAs in grading submissions that are estimated to have low grading accuracy
(e.g. with large differences between self and peer grades). In addition, our early exper-
iments suggest that greater accuracy is possible by weighting different raters’ grades
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differently, an important topic for future work. Lastly, our experiments suggest that
machine-grading approaches (such as those for essay grading) may be combined with
peer assessment to provide accurate assessment.

6.3. Inflating self-grades and other gaming
Many types of cheating are currently possible and unchecked in online classes. For
example, someone else could simply take a course on your behalf. To the extent that
participation in the online classroom is based on intrinsic motivations (such as a de-
sire to learn), students rarely blatantly cheat [Mazar et al. 2008]. (Anecdotally, sev-
eral instructors in early online classes have reported that some students appear to be
cheating, but that it doesn’t currently appear to be widespread.)

To date, large-scale online classes, including our own, have primarily emphasized
learning, rather than certification [Widom 2012]. Students do not receive much in the
way of credit. (Though on social media like Facebook and LinkedIn, some students
report having “attended” Stanford.) Still, some students probably attempted to game
their score by strategically over-reporting their grade (Figure 18). As online classes
count for more benefits, such gaming may increase.

Gaming also has a silver lining. A valuable skill for success is the theory of mind
to intuit how others perceive one’s performance [Boud 1995], and gaming may help
students develop this skill.

Cheating may also arise if the value of officially recorded performance in these
classes increases (e.g. [Kurhila 2012; Lewin 2013b]). To combat this, several organi-
zations have proposed solutions like in-person testing facilities (e.g. [Lewin 2012b]),
or verified-identity certification [Lewin 2013d]. Others remain focused on teaching for
students who want to learn [Widom 2012].

6.4. Limitations of peer assessment
While peer assessment offers several benefits, it also has limitations. First, peers and
experts (e.g. staff) may interpret work differently (see Appendix A.2). Such differences
are well-known in related fields: Experts and novices both robustly reach consensus
about creativity, but their consensual judgments differ from each other [Conti et al.
1996]. This may be because novices and experts differ in their tacit understanding
of value [Kaufman et al. 2008]. Peer assessment addresses this problem by provid-
ing raters with expert-made rubrics, but some differences may persist. In addition,
independent assessment via rubrics and subsequent aggregation may not assess “con-
troversial” work well.

Second, peer assessment imposes a particular schedule on class, and limits student
flexibility. In our class, several students complained in class forums about being unable
to complete peer assessments in time. Lastly, while peer assessment works well for
the large majority of students, students who receive an unfair assessment may lose
motivation. Anecdotally, we have noticed that students are generally satisfied with
their overall grade, but are frustrated by inaccurate qualitative feedback from some
peers. Addressing these motivational aspects remains future work.

6.5. The changing role of teachers
Peer assessment fundamentally changes the role of staff. When peer assessment pro-
vides the primary evaluative function, the staff role shifts to emphasize coaching [Kue-
bli et al. 2008]. Students sometimes believe that teachers grade on personal taste, and
focus on currying favor. By contrast, when teachers coach but do not grade, students
focus more on conceptual understanding [Perry 1970]. Also, providing explicit grading
criteria (especially in advance) helps convey to students that grading is fair, consistent,
and based on the quality of their work.
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Peer assessment also changes how instructors spend their time. When staff assess
student work, their effort is focused on doing the grading. By contrast, with peer as-
sessment, the instructor’s main task is articulating assessment criteria for others to
use. Because of the diversity of submissions, this can be extremely difficult to do a
priori. Teachers should plan on revising rubrics as they come across unexpected types
of strong and weak work. After revision, these rubrics can scale well for both students
and other teachers to use. For online education to blossom, it will be important to teach
the teachers best practices for rubric creation, and to create effective design principles
and patterns for creating assessments.

While the scale and medium of online education poses new challenges, it also offers
new solutions. In key areas, online education encodes pedagogy into software, which
increases consistency and supports reuse – and defaults have a powerful impact on
behavior [Palen 1999].

The role of teaching staff (TAs) changes too. Instead of spending a majority of their
time grading, they spend a large fraction of their time fielding student questions, men-
toring students, boosting student morale and autonomous perspective, and making
data-driven revisions to class materials.

6.6. The changing roles of students
One of the most remarkable results from our experience was that students reported
that assessing others’ work was an extremely valuable learning activity. Can online
classes provide an avenue not just for peer assessment, but for peer learning as well?

The second iteration introduced Community TAs recruited among students from the
first iteration (Armando Fox and David Patterson’s Software-as-a-Service online class
used a similar program [Fox and Patterson 2012]). We invited students who did well
in class, assessed many submissions voluntarily, and participated actively in class to
become Community TAs. Community TAs volunteered their time, and were not paid.
Their duties comprised grading assignments, answering student questions, and help-
ing iteratively improve assignments. Five students from across the world participated.
Together, community TAs answered 547 questions on the forum, staff (3 local TAs and
the instructor) answered 582 questions. In addition to providing factual answers and
assignment clarifications, Community TAs also leveraged their personal experience to
offer advice and cheerleading.

We hypothesize that Community TAs are effective for the same reasons as under-
graduate teaching-assistants at a university [Roberts et al. 1995]. First, because com-
munity TAs had done well in the class, they possessed enough knowledge to effectively
offer information and guidance. Second, because they had taken the class recently,
they could easily empathize with issues students faced and also could effectively offer
social support.

Massive online classes also offer individual students an opportunity to have large-
scale positive impact. For example, when the first assignment of the Spring 2012 class
had fewer peer assessments than needed, one student rallied her peers to finish a large
number of assessments over a single day (the top ten students assessed an average of
48 submissions: nearly ten times their required number) so that students could get
feedback in time. She also participated heavily in the forums, and gathered staff-like
respect from her peers.

6.7. The changing classroom
The online classroom is distinctly different from its in-person counterpart. Recent re-
search has discovered some of these differences: students in online classrooms are
much more diverse both demographically, and in their objectives in taking the class,
and platforms make some kinds of data, such as engagement with course material,
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more plentiful and finer grained, while making other information, such as facial ex-
pressions of confusion, completely inaccessible [Breslow et al. 2013].

These differences require rethinking the design of the classroom. For instance,
students often have work commitments, and holidays are at different times around
the world. This reflects in class scheduling: the first iteration of the class spanned
seven weeks, mirroring the time these topics take in the Stanford course. Although
university-like deadlines helped generate interest in online classes [Lewin 2013c], we
found that campus-paced deadlines are too rigid online. Consequently, the second iter-
ation spanned nine weeks to give students more time and flexibility.

While class diversity requires adaptations, it also inspires new opportunities. How
can teachers support student leadership and community learning more directly in the
online classroom? Again, the design studio offers inspiration [Schön 1985; Pendleton-
Jullian 2010]. By making not only the results of work, but also the process of creation
highly visible, it helps students learn and build awareness through observation [Klem-
mer et al. 2006]. In addition, a studio facilitates dialogue between students, instruc-
tors and artifacts that helps students collaboratively learn difficult concepts and solve
problems [Schön 1985].

The opportunity here is two-fold. First, online learning can be blended with colocated
learning. Even though this was a completely online class, students self-organized to
meet up in ten locations around the world including London, San Francisco, New York
City, Buenos Aires, Aachen (Germany), and Bangladesh.

Second, we can build online experiences that are inspired by the physical studio. By
removing the constraints of the physical classroom, online classes have made educa-
tion accessible to many new kinds of students—the new mother, the full-time profes-
sional, and the retiree. Preserving this accessibility, while providing the benefits of the
in-person classroom online offer a promising area for future work.

More generally, online education requires us to re-conceptualize what it means to be
a student in many ways. One has to do with enrollment and retention [Kizilcec et al.
2013]. Typing one’s email address into a webpage is not the same as showing up for the
first day of a registrar enrolled class. It’s more like peeking through the window, and
what the large number of signups tell us is that lots of people are curious. How can we
convert this curiosity into meaningful learning opportunities for more students?

7. CONCLUSIONS AND FUTURE WORK
This paper described our experiences with the largest use of peer assessment to date.
This paper also introduced the “fortune cookie” method for peers to provide each other
with qualitative, personalized feedback. We demonstrated that providing students
feedback about their rating bias improves subsequent accuracy. There are many ex-
citing opportunities for future work.

First, systems could allocate raters and aggregate their results more intelligently
to increase accuracy and decrease work. Crowdsourcing techniques suggest initial
steps. After assessment is complete, systems could differentially weight grades based
on raters’ past performance, for instance, extending approaches like [Ipeirotis et al.
2010]. Also, the number of raters could be dynamically assigned to be the minimum
required for consensus, extending e.g. [Guo et al. 2012]. Furthermore, an algorithm
could adaptively select particular raters based on estimated quality, focusing high
quality work where it’s most needed, as in [Dai et al. 2010]. Finally, as with stan-
dardized essay grading [Hearst 2000], peers could be used together with automated
grading algorithms (such as [Socher et al. 2012; Zaidan and Callison-Burch 2011]).
This hybrid approach can achieve consensus while minimizing duplicated effort. Ide-
ally, these grading schemes should be understandable as well as accurate. Should the
system show students how their grade was generated? And if so, how?
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Second, current online learning platforms suffer from sensory deprivation relative
to a human teacher. They receive final work products, but have no knowledge of stu-
dents’ process. Cognitive tutoring software has shown that attending to students’ pro-
cess can improve learning through personalization—adapting questions, pacing, and
guidance [Corbett et al. 2002]. Integrating rich learner models with peer assessment
offers many exciting opportunities.

Third, physical universities employ many structural levers to keep students moti-
vated and engaged. In our experience, only a quarter of approximately 3000 students
who completed a time-intensive first assignment did all five assignments. Needless to
say, at a physical university the completion rate for an equivalent class is much higher.
How can online settings provide greater motivation support? Future work could draw
both on research on commitment strategies in online communities (e.g. [Kraut and
Resnick 2011]) and resources used at physical universities, such as mentoring and
orientation courses [Murtaugh et al. 1999]. More generally, online learning platforms
could benefit students by incorporating known best practices about learning and mov-
ing to a more evidence-based approach.

Fourth, peers can help instruction itself. One promising approach is to use social
mechanisms to highlight good student work and build connections, such as [Marlow
et al. 2013]. Another is to leverage peers in physical meet-ups to augment instruc-
tor teaching [Cadiz et al. 2000]. This approach also creates technology and pedagogy
design opportunities for a “flipped” classroom—what should class time look like at a
university when students can watch the professor on video? Already, several univer-
sities are teaching physical classes augmented with online materials [Martin 2012].
How would different roles change with such a model?

Fifth, future work has the potential to tie student work in class to skilled crowd
work [Kittur et al. 2013]. For instance, students in the HCI class could build prototypes
and design websites for clients, or students studying Machine Learning could compete
to build predictive models. How can the pedagogical goals of the class be intertwined
with potentially productive work?

This future work will offer students around the world an opportunity to learn in
ways previously impossible.

APPENDIX
A.1. Agreement between peer grades and staff grades without aggregation
Comparing the peer grades (not their medians) with staff grades demonstrates the
value of aggregating peer grades (Figure 19). 26.3% of grades were within 5% of staff
grades, and 46.7% within 10%. (Recall that the median agreement was 42.% and
65.5%, respectively)

A.2. Grading differences
A.2.1. Where peers graded higher. Figure 20(a) shows an application a student cre-

ated as “an interactive website which helps people tracking their eating behavior
and overall-feeling, to find and be able to avoid certain foods which causes discomfort
or health related problems.” Peers rated the prototype highly for being “interactive”.
Staff, rated it low, because “while fully functional, the design does not seem appropri-
ate to the goal. The diary aspect seems to be the main aspect of the app, yet it’s hidden
behind a search bar.”

A.2.2. Where peers graded lower. Figure 20(b) shows an application a student created
as an “exciting platform, bored children can engage (physically) with other children
in their neighborhood.” Staff praised it as “fully interactive, page flow is complete”,
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Fig. 19. Agreement of unaggregated peer grades and staff grades. Agreement is much lower than between
median peer grades and staff grades.

while some peers rated it “unpolished”, and asked the student to “Try to make UI less
coloured.”

(a) Submission where peers grade higher than staff (b) Submission with staff grade higher than peers

Fig. 20. Student submissions with large differences between staff and peer grades.

B. SAMPLE RUBRIC
Table V shows a rubric for the “Ready for testing” assignment. All other rubrics are
available as online supplementary materials.
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