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Abstract

The billions of pages on the Web today provide an opportunity to understand de-
sign practice on a massive scale. Each page comprises a concrete example of visual
problem solving, creativity, and aesthetics. In recent years, data mining and knowl-
edge discovery have revolutionized the Web, driving search engines, advertising
platforms, and recommender systems that are used by more than two billion peo-
ple every day. However, traditional data mining techniques tend to focus on the
content of Web pages, ignoring how that content is presented. What could we learn
from mining design?

This thesis introduces design mining for the Web, and presents a scalable soft-
ware platform for Web design mining called Webzeitgeist. Webzeitgeist consists of a
repository of pages processed into data structures that facilitate large-scale design
knowledge extraction. With Webzeitgeist, users can find, understand, and lever-
age visual design data in Web applications. In this dissertation, I demonstrate how
software tools built on top of Webzeitgeist can be used to dynamically curate design
galleries, search for design alternatives, retarget content between page designs, and
even predict the semantic role of page elements from design data.

As more and more creative work is done digitally and shared in the cloud, We-
bzeitgeist illustrates how design mining principles can be applied to benefit content
creators and consumers.
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Chapter 1

Introduction

Design is driven by data. Whether building a Web page, programming a Mars rover,
or planning the menu for a dinner party, designers draw on prior work to solve
new problems [105, 156, 141]. Both novices and experts alike turn to examples
of previous work to reduce barriers to entry, lower the cognitive burden of routine
tasks, and foster inspiration when innovation is required [80, 69, 159]. In fact,
using examples to explore design variations is what Hofstadter called the very “crux
of creativity” [86].

The Web provides an opportunity to use data to inform design practice on an
unprecedented scale. The ready availability of creative work online has engen-
dered a new culture of remixing, in which content producers in diverse fields rou-
tinely leverage, adapt, and repurpose existing artifacts in their own creations [118,
180]. For Web design in particular, each of the billions of pages on the Web today
comprises a concrete example of visual problem solving, creativity, and aesthetic
preference [138, 103], all in a form that can be easily accessed and shared [98].

The means and methods Web designers employ to draw on prior work, however,
are largely informal and ad hoc [83]. While search engines like Google have revo-
lutionized the process of locating information on the Web, no such broad support
exists for finding relevant designs amongst hundreds of millions of extant pages.
Similarly, while end-users can “view source” to inspect a page’s implementation,
they still shoulder most of the burden of parsing a page’s code to understand its

1
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design, and manually adapting that design to the task at hand. Without better tools
to help users locate, understand, and leverage existing work, much design data on
the Web remains underutilized.

This dissertation introduces design mining for the Web: using data mining and
knowledge discovery to index, analyze, and adapt the design of Web pages. It
demonstrates how many of the same technologies that drive search engines, adver-
tising platforms, and recommender systems on the Web today [107, 123] can be
repurposed to support new, useful design interactions. By focusing not on the infor-
mation content of Web pages but the way that content is presented, design mining
enables the development of data-driven design tools and rigorous statistical analysis
of Web design patterns and trends.

This thesis makes two major contributions. First, it presents a set of principles
and practices for Web design mining, embodied in a software platform called We-
bzeitgeist. Webzeitgeist consists of a repository of more than one hundred thousand
Web pages processed into data structures that facilitate large-scale design knowl-
edge extraction. Second, it demonstrates how software tools built on top of We-
bzeitgeist can be used to support a diverse set of design applications, including
scalable search for design alternatives, automatic retargeting of content between
page designs, and predicting the semantic role of page elements from design data.

1.1 Overview

This dissertation is divided into seven chapters, setting out the origins of design
mining in the literature, motivating and chronicling development of a platform for
design mining the Web, describing a few key applications that design mining en-
ables, and sketching a future for how knowledge discovery and data mining may
eventually transform the nature of creative work on the Web and in other domains.

Chapter 2 examines the technologies that contribute to the design of a Web
page, provides a brief overview of the history of data mining, and discusses the
challenges and requirements in adapting traditional Web content crawling and in-
dexing techniques to capture design information. The chapter also surveys the
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rich history of data-driven design in human computer interaction and cognitive
science.

Chapter 3 introduces Webzeitgeist, a scalable platform for Web design mining.
The chapter discusses the principles that underlie the Webzeitgeist architecture, the
implementation of those principles in software, and the repository of more than
one hundred million design elements captured by crawling more than a hundred
thousand pages from the Web.

The next three chapters introduce applications built using design mining princi-
ples and data. Chapter 4 demonstrates how information retrieval technologies ap-
plied to design data can be used to enable interactions like real-time design search
and dynamic curation of design galleries. Chapter 5 introduces Bricolage, a struc-
tured prediction algorithm that learns how users create correspondences between
Web designs to automatically transfer the content from one page into the style and
layout of another. Chapter 6 explores how design information can be used in se-
mantic Web applications to predict the structural role of page elements from design
data.

Finally, Chapter 7 summarizes the lessons learned from early design mining
research, and sketches future directions for the field.

1.2 Statement on Prior Publications and Authorship

The material presented in this thesis is the result of several years of work with my
advisor, Scott Klemmer, and a number of other talented and dedicated researchers.
Although I initiated and led all of the projects described herein, none of them would
have been possible without the efforts of my collaborators. Both Bricolage, which
was published at CHI 2011 [111], and the flexible tree matching algorithm pub-
lished at IJCAI 2011 [113] were joint work with Jerry Talton and Salman Ahmad;
Tim Roughgarden contributed to the complexity proof in the latter paper. Similarly,
both Webzeitgeist, published at CHI 2013 [110], and the work on structural seman-
tic classifiers published as a Stanford Technical Report [119] were joint work with
Jerry Talton, Arvind Satyanarayan, Maxine Lim, Cesar Torres, and Salman Ahmad.
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Chapter 2

Related Work

This chapter provides a broad overview of the technologies related to the visual
presentation of Web pages. It also presents a survey of prior work in Web data
mining to ground the discussion of Web design mining, summarizes the literature
in Web design reuse and remixing to motivate the applications described later in
this dissertation, and briefly discusses the theory of example-based design.

2.1 The Design of a Page

Most Web pages are written in Hypertext Markup Language (HTML) [92]. Content
(e.g., text, images, etc.) is embedded in a set of nested HTML tags, which are iden-
tified by a name optionally followed by a list of attributes. For example, the HTML
tag <img src=“picture1.jpg” /> is an img tag with a src attribute that specifies the
image’s location (Figure 2.1, left).

HTML pages are displayed in Web browsers, which use a layout engine to parse
the source HTML into a Document Object Model (DOM) tree. The DOM encodes a
page’s render-time content, style, and layout [48]. When computing a page’s DOM,
the browser often needs to fetch several types of external resources — images, style
sheets, scripts — that are specified in the source HTML. For example, to render the
HTML in Figure 2.1, the browser would need to request the image file picture1.jpg
and Cascading Style Sheet (CSS) file gallery.css.

5
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<html><head>
  <title>Photo Gallery</title>
  <link rel="stylesheet"
   href="gallery.css"
   type="text/css"/></head>
 <body>
  <div class="photo">
   <h3>My first photo</h3>
   <img src="picture1.jpg"/>
  </div>
  ...
 </body>
</html>

@import url("base.css");

img { 
  border:1px solid black; 
}
.photo { 
  width:300px; 
}
.photo h3 { 
  font-weight:bold; 
}

...

gallery.html gallery.css

Figure 2.1: Left: A snippet of Hyper Text Markup Language (HTML) code from an
image gallery Web page. Right: An external Cascading Style Sheets (CSS) file that
describes the presentation of gallery.html. CSS rules are comprised of selectors
that map to HTML, and declarations that specify style properties. Selectors can
match to HTML elements tag names (img), class and id attributes (.photo), or
ancestry paths in the document hierarchy (.photo h3).
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CSS is a language for specifying the presentation of Web documents [181]. CSS
rules describe how markup should be rendered, including the visual properties of
elements (e.g., dimensions, colors, fonts) and their positioning in a page’s layout.
Every rule has selectors identifying a set of document elements, and declarations
specifying the display properties for those elements. Selectors can match HTML
elements by tag name (e.g., div, img), class and id attributes, or ancestry paths in
the document hierarchy (Figure 2.1, right). Every declaration consists of a property
(e.g., opacity) and value, which can be absolute or defined relative to the value of
the parent element.

CSS allows multiple and even conflicting style rules to be applied to the same
element. These conflicts are resolved by the layout engine at render-time through
a process called cascading: rules are ranked according to a priority system and the
rule that has the highest priority controls the display. For example, inlined CSS (i.e.,
style embedded in HTML) has priority over rules defined in external style sheets.
Therefore, rendering a page involves cascading style rules and computing the final
set of display properties for each page element.

Taken together, HTML and CSS provide a complete specification for how a lay-
out engine should display a Web page. Display information can be accessed through
a page’s DOM by querying an element for all the HTML and CSS properties that are
computed at render-time. Moreover, for many pages, the DOM’s structure provides
a close approximation to a page’s visual hierarchy. As we will see, this structured
representation is useful for bootstrapping page segmentation algorithms [28], iden-
tifying semantically similar elements [52], and comparing page designs.

2.2 Web Data Mining

Data mining refers to the discovery and extraction of useful knowledge from large
datasets [75]. Web data mining often involves finding relevant Web documents,
automatically extracting information from those documents, and generalizing pat-
terns from that information [55]. Broadly, data mining techniques can be classified
by the types of data they mine from the Web [107].
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2.2.1 Content Mining

Because there are many different types of content on the Web (e.g. text, images,
video, etc.), Web content mining comprises a wide array of techniques. Text-based
mining approaches are often categorized into two different views on representing
Web documents [107]: information retrieval and databases.

Since most of the information on the Web is unstructured [55], the information
retrieval view typically models Web documents as bag-of-words vectors, treating text
as an unordered collection of words [44]. Each vector component corresponds to a
distinct word from a fixed dictionary, often encoding the frequency of the word in
a particular document inversely weighted by how commonly it occurs in all docu-
ments [99]. These term frequency vectors are often modulated by techniques such
as latent semantic analysis, which map similar documents that do not necessar-
ily share terms closer together in “semantic” space [45]. To compare documents,
retrieval systems compute cosine similarity measures between vectors [75].

The database view of text mining treats Web sites as databases, inferring under-
lying semantic schemas from semi-structured HTML data [59]. Web documents are
commonly represented as Object Exchange Models (OEMs), which are edge-labeled
graphs describing the semantic structure of information [4]. OEMs are useful for
modeling Web information because they do not require that similar objects pos-
sess identical schemas, facilitating structure extraction [137] and data integration
across multiple sites [37].

2.2.2 Structure Mining

Structure mining involves storing and analyzing the graph structure of the Web im-
posed by the hyperlinks between pages [44]. The HITS algorithm (Hyper-Link In-
duced Topic Search) introduced the concepts of authorities — pages that provided
high quality content for a particular topic — and hubs — pages that cataloged good
resources for a particular topic [102]. Through link analysis, HITS iteratively com-
putes authority and hub values for each page in a Web network until an equilibrium
is reached, identifying the most relevant sources for a particular topic. Google’s
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PageRank algorithm generalizes these ideas by modeling a random walk over the
Web graph, and ranking pages proportionally to the likelihood that they will be
visited in this walk [25].

2.2.3 Usage Mining

The usage data of a Web page comprises the information generated by user interac-
tions such as text input and mouse clicks. Usage data can typically be found in user
profiles and server and browser logs [107]. Through usage mining, individual be-
havior patterns can be discovered and analyzed to enable “mass customization” of
Web applications [167]. For example, by tracking browsing and purchasing history,
Amazon can build recommender systems that make personalized product sugges-
tions [41]. Similarly, through collaborative filtering, Netflix can predict a person’s
media preferences by mining other people’s ratings for films and TV shows [169].
Usage mining has also transformed the way people build and evaluate Web sites:
companies frequently rely on A/B tests to compare alternative user interface de-
signs, optimizing for measures such as user conversion, retention rates, and gener-
ated revenue [104].

2.2.4 Hidden/Deep Web Mining

In addition to usage data, user interactions often generate dynamic Web pages that
are not directly accessible to Web crawlers which follow hypertext links [149]. For
example, many Web pages are hidden behind Web forms or AJAX calls. To mine the
hidden Web, systems often program robots to simulate user actions [128] or save
usage traces from specific inputs [17]. By indexing these pages, content in hidden
databases can be extracted and combined across multiple sites [59, 17].

2.2.5 Temporal Web Mining

Web mining can also be used to understand how pages have changed over time.
The Internet Archive’s Wayback Machine periodically recrawls pages to create a
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temporal archive of the Web [183]. Zoetrope allows users to temporally query and
filter Web pages through user-specified lenses, which track spatial regions, DOM
elements and content through time [5]. DiffIE, a browser plug-in, caches visited
pages and highlights regions of new text when they are revisited [176], helping
users quickly detect when pages change [6].

2.3 Design Mining

Although prior work in Web data mining examines many different features of Web
pages, most data mining systems explicitly discard style and rendering data [189,
171], deeming it too expensive to maintain and a confounding factor in content
analysis. In recent years, however, researchers have begun to build systems to
evaluate Web designs along axes such as visual styles [153], visual aesthetics [191,
151], perceived trustworthiness [121], and quality [96]. Many of these models are
based on manually harvested repositories of a few dozen or hundred pages [191,
121, 153, 151]. A few systems have been built for crawling and indexing specific
design attributes [96, 79], but their architectures cannot easily be repurposed for
other design applications.

The goal of this thesis is to develop a general platform for design mining, low-
ering the barriers to learning different data-driven models of Web design. Webzeit-
geist archives the entire DOM structure and all of the render-time properties for
each DOM element of every page it crawls. For the first time, client applications can
stream design descriptors for page elements from a central repository, just like text
descriptors are streamed from Web content repositories [85]. Moreover, Webzeit-
geist’s extensible architecture allows new data to be collected and integrated with
the repository for supervised learning applications, for instance via crowdsourcing.

2.3.1 Crawling and Archiving Design

Most content and structure-based Web crawlers such as the Internet Archive’s Her-
itrix [82] only perform static analysis of a page’s source, indexing content streams
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and other metadata referenced directly in the page’s HTML [85, 82]. However, ex-
ternal resources specified in source HTML can have their own resource dependency
chains, which can only be resolved by a browser at render-time. In order to compute
the DOM tree of a Web page — the data structure containing the complete display
specification — the page must actually be rendered. If the page is not rendered
when it is crawled, the crawler cannot be certain that all the relevant resources
have been requested and stored, raising the possibility that the page’s layout will be
broken when it is locally re-loaded. Therefore, design crawlers must render every
page that they crawl [96, 79], unlike their content-based counterparts.

Having to render pages to access design information raises two issues. First, ren-
dering is much slower than static source analysis: the layout engine has to request
and load external resources, cascade style information, compute the DOM, and ras-
terize the page. For many machine learning applications, re-rendering pages in the
inner-loop of an algorithm to access design information would be prohibitively ex-
pensive. Second, with the advent of dynamic HTML and client-side scripting, the
design of a page may change between accesses even if its source does not. This
ephemerality can frustrate client applications that require consistent data. To pro-
duce a complete, static record of a page’s design, design crawlers must version and
save all requested resources, and snapshot the entire DOM tree when a page is
crawled [144, 5].

2.4 Design Reuse and Remixing on the Web

There are many benefits to leveraging examples in design: designers find, under-
stand, and adapt relevant prior work to frame problems, generate alternative so-
lutions, and evaluate those solutions [106]. Repurposing successful elements from
prior ideas can be more efficient than reinventing them from scratch [70]: a de-
signer still must evaluate whether the adapted solution is appropriate for a given
problem, but often “validation is much easier than generation” [105]. This section
surveys current tools and technologies that support design reuse on the Web.
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2.4.1 Retrieval Systems

Tools developed to help users find information on the Web do not always naturally
extend to design. For instance, if a designer searches for “colorful Web designs,”
Google will return pages that discuss colorful Web designs, instead of finding actual
pages with lively and exciting color schemes.

Like the memex proposed by Vannevar Bush in 1945 [27], retrieval systems are
intended to augment people’s memories, helping users recollect and locate appro-
priate examples for a given task [155]. Two key challenges in retrieval systems
are determining how to index examples, and how to expose stored information to
users [105].

Retrieval interfaces for Web designs have investigated a variety of query mech-
anisms [79, 115, 153]. Adaptive Ideas allows users to search for designs that are
similar to a selected example or that represent variety along a low-level style di-
mension, and borrow from them throughout the design process [115]. In addition
to example-based search, d.tour allows users to query by high-level style concepts
such as “minimal” or “clean” [153]. Retrieval systems in vision and graphics have
explored the usage of relative attributes to iteratively refine searches [108, 34], for
instance allowing users to request designs that are “more feminine” or “less scary.”
Igarashi et al. present a sketch-based Web design search interface, where users draw
boxes to represent content and the system returns pages with similar layouts [79].
This thesis seeks to unify and extend this line of research with a common framework
for prototyping design retrieval mechanisms.

2.4.2 Templates

Templates represent one of the most popular mechanisms for design reuse on the
Web, offering pre-defined styles and layouts which can be applied to user-specified
content [72]. Fundamentally, templates separate the content of a document from
the way that content is presented. This separation is often invaluable in address-
ing the challenges of the modern Web, where designs must adapt to dynamically
aggregated content, different viewing devices, and variable user abilities [93].
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CSS-based Templates

CSS is perhaps the most basic type of design template on the Web: the same style
sheet can be applied to multiple documents, and conversely, the same markup can
be presented in radically different ways by different style sheets [162].

Adapting CSS files to new content, however, can be difficult. CSS written for
specific markup often depends on that markup’s information architecture and can
only be adapted to other documents with similar structure. Moreover, even markup
with similar structure must be mapped to the appropriate CSS rules, for instance
by setting the class and id attributes of HTML elements to match corresponding
CSS selectors. Since manually adapting markup to existing CSS can be tedious and
operates at the level of code, GUIs have been developed to inspect and transfer
element-level styles between pages [57, 33].

Templating systems that hide the complexity of CSS entirely may be less bur-
densome to users, offering a trade-off between design automation and content
customization. One-click page generators such as Google’s Blogger [20] attract
novice Web designers who simply want to pick a template design and drop-in con-
tent. However, these templates impose a rigid information architecture, making
it difficult for users to repurpose a blog template to build a business site. On the
other hand, popular CSS frameworks like Twitter Bootstrap [22] and Zurb’s Foun-
dation [60] allow users to more flexibly define the content structure of their pages.
By wrapping content with CSS selectors defined by these frameworks, users can
create Web pages that are automatically styled and adapt to different viewing con-
ditions. However, these frameworks usually employ a constraint-based grid system
to compute page layouts, which requires users to author complex markup.

Template Authoring

While such templates and frameworks enable content producers to take advantage
of existing designs, authoring generic templates can be challenging. CSS rules pre-
vent simple design constraints like “always left align the navigation bar with the
article heading” from being reliably enforced in code, prompting some researchers
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to use sophisticated tools like linear arithmetic and finite domain constraints to gain
control over layout and style [11, 24].

Similarly, the limitations of CSS frequently necessitate the use of “presenta-
tional” HTML to achieve layout effects such as vertically-aligned text. Benson et al.
introduced Cascading Tree Sheets (CTS) to factor out presentational structure from
HTML for better separation of content from presentation and design reuse [13].
With CTS, Web authors write content-only HTML files and link to CTS templates
via CSS selectors to inject presentational HTML where needed.

Automatic Document Layout and User Interface Generation

Several researchers have proposed new templating languages to more flexibly au-
thor Web documents and overcome HTML and CSS limitations [97, 158]. Jacobs
et al. introduced constraint-based templates that render content into grid layouts
much like in print media [97]. Although CSS3 supports multi-column layout within
a single element, it does not allow content to flow between arbitrary elements or
around images as commonly seen in newspapers and magazine layouts. Jacobs et
al. use a dynamic programming algorithm that chooses the layout from a set of
grid-based templates to best satisfy content and viewing constraints. Schrier et al.
extended this work by developing templates that adapt to different types of content
and viewing conditions, reducing the number of individual templates that need to
be enumerated [158].

Adaptive document layout is closely related to model-based user interface gen-
eration, in which high-level specifications are used to automatically configure UI
designs [140, 170, 172, 147]. Some model-based systems such as SUPPLE [63]
generate user interfaces that adapt to different devices and user abilities.

While constraint and model-based systems offer expressivity and adaptivity, au-
thors face the burden of learning new specification languages, enumerating possible
models, and understanding how constraints will interact with each other under a
variety of conditions [132]. To make these systems easier to use, constraint and
model specifications can be inferred from examples constructed with GUIs [61, 97,
129], designer demonstrations [134, 133, 172], and usage data [62, 65, 66, 64].
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This thesis proposes a method by which existing Web designs can be automati-
cally leveraged as templates. The Bricolage algorithm (Chapter 5) provides a one-
click solution for adapting the entire content of one page to the style and layout of
another. For content producers, the algorithm offers the ease of use of templates
along with the diversity of the Web. For template authors, it obviates the need to
learn new specification languages and enumerate templates for different types of
content. Moreover, the technique can also be used to adapt designs to different
viewing conditions (e.g., from desktop to mobile).

2.4.3 Mashups

Another popular form of design reuse on the Web are mashups, which allow users to
synthesize data from multiple sources, often obtained through scraping and public
APIs [76].

To lower the barrier to creating mashups, researchers have built end-user tools
that partially automate the selection and transformation of relevant content. Many
systems create extraction patterns from user-specified page elements to automati-
cally collect similar content [87, 51, 50, 120, 178]. Graphical tools such as Yahoo!
Pipes [143] and Marmite [185] use a dataflow approach (similar to Unix pipes) to
aggregate and process data from Web services. Given a set of user-selected page el-
ements, d.mix generates service calls that return those elements via a site-to-service
map [77]. After collection, these mashup tools import the content into interfaces
such as spreadsheets [185, 120] or page layouts [51, 50, 77] to help users visualize
and manipulate the aggregated data.

While researchers have built a variety of tools for remixing Web content from
different sites and services, only a few systems scaffold design mashups. Systems
such as CopyStyler [57] and WebCrystal [33] allow users combine stylistic elements
like fonts, colors, and backgrounds from different pages in a piecemeal fashion.
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2.5 Examples, Creativity, and Expertise

While design reuse confers great benefits, there are pitfalls to relying too much
on examples [105]. Although people naturally draw upon examples to aid them in
new situations, they may not always identify the most relevant and useful prior so-
lutions [89]. Users may also demonstrate conformity when exposed to prior ideas in
creative generation tasks [164]: fixating on the wrong analogs can lead to incorrect
reasoning about the current situation or cognitive dead-ends [159]. Novices are es-
pecially vulnerable to the negative implications of cognitive priming because they
are often unable to see past the surface features of a problem to make connections
based on more abstract, underlying principles [39].

However, expertise can also contribute to cognitive fixation. A professional can
become mired in routine and repetition and “miss important opportunities to think
about what he is doing” [157]. As a professional deals with the same types of situ-
ations over and over again, he can become a routine expert: “outstanding in terms
of speed, accuracy, and automaticity of performance, but [lacking] flexibility and
adaptability to new problems” [80]. When routine experts are confronted with a
new situation, they may map it blindly to an established category of problem even
when it is inappropriate to do so.

Adaptive expertise, in contrast, “involves learning not just how to perform
a procedural skill efficiently, but also know when variations to previous ap-
proaches are necessary – how and when to apply their heuristics – and thus
results in experts being able to handle novel situations” [141]. Unlike routine
experts, adaptive experts are able to optimize for both efficiency and inno-
vation [159]. When adaptive experts encounter new situations they are able
to recognize routine subproblems and solve them efficiently with prior knowl-
edge. This know-how “frees attentional bandwidth and enables people to con-
centrate on other aspects of the new situation that may require nonroutine
adaptation” [159]. Marsh et al. studied how exposure to examples affects both
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conformity and novelty [127], and found that while exposure to examples in-
creases conformity, conformity does not preclude creativity: conforming ele-
ments may more often be used to replace mundane aspects of design than novel
ones.

Thus, examples can boost efficiency by informing standard parts of a design
problem. Gentner et al. describe this as “analogy as recipe: the analogist uses anal-
ogy to avoid hard thought, as when we fill out our tax form by cribbing for last
years” [69]. At the same time, innovation and conceptual change can occur from
making connections at a more abstract, structural level, possibly in a completely dif-
ferent domain: “local analogies are useful for filling in an established framework,
whereas distant analogies are used for creating a new framework” [69]. Here, dis-
tance can be in concept space or time: people have a tendency to fixate on recently
seen examples, but adaptive experts draw from all prior experience [141].

Although building on example-based design theory is beyond the scope of this
thesis, design mining provides a rich platform with which to study how Web tech-
nologies for design reuse affect practice. Can we build design tools that allow
novices and professionals alike to behave more like adaptive experts during creative
tasks? Lee et al. demonstrated that exposure to examples leads to higher quality
Web design [115]. At what point in the design process should users be shown ex-
amples to optimize for quality? For efficiency? For creativity [109]?
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Chapter 3

A Scalable Platform for Design
Mining the Web

Advances in data mining and knowledge discovery have transformed the way Web
sites are designed. However, while visual presentation is an intrinsic part of the
Web, traditional data mining techniques ignore render-time page structures and
their attributes. This chapter introduces design mining for the Web: using knowl-
edge discovery techniques to understand design demographics, automate design cu-
ration, and support data-driven design tools. This idea is manifest in Webzeitgeist,
a platform for large-scale design mining comprising a repository of over 100,000
Web pages and 100 million design elements. This chapter describes the principles
driving design mining and the implementation of the Webzeitgeist architecture.

3.1 Introduction

Web knowledge discovery and data mining [123] have transformed the way peo-
ple build and evaluate Web sites [104], and the way that consumers interact with
them. The information gained from Web mining drives search, e-commerce, in-
terface development, network architectures, online education, social science, and
more [107].
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Figure 3.2: The Webzeitgeist architecture. A bespoke Web crawler requests pages
through a caching proxy, and renders them in a set of browser threads. The proxy
saves requested resources in a NoSQL key-value store, while the crawler writes the
complete DOM tree for each page into a relational SQL database. Then, a set of
post-process scripts are run to compute high-level features and data-structures over
the stored pages. Client applications access the repository through a RESTful API.

Web data mining typically comprises three domains: usage mining, or click anal-
ysis [167]; content mining, or text analysis [124]; and structure mining, or link
analysis [71]. Together, these techniques mine the content contained in a Web page,
but ignore that content’s presentation. In fact, most mining and knowledge discov-
ery systems discard style and rendering data [189, 171]. This raises the question:
what could we learn from mining design?

Webzeitgeist comprises a repository of Web pages, processed into data structures
that facilitate large-scale design knowledge extraction. The Webzeitgeist architec-
ture is based on four underlying principles — scalability, extensibility, completeness,
and consistency — and optimized for three common use cases: direct access to spe-
cific page elements, query-based access to identify a set of page elements which
share common properties, and stream-based access to the repository as a whole for
large-scale machine learning and statistical analysis [85].

Webzeitgeist’s repository is populated via a bespoke Web crawler, which requests
pages through a specialized caching proxy backed by a flexible data store. As each
page is crawled and rendered, its resources are versioned and saved, and its Docu-
ment Object Model (DOM) tree is snapshotted to produce a complete, static record
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of the page’s design. Then, a set of semantic and visual features describing each
DOM node are computed in a post-process and stored. Client applications access
the repository through a RESTful API [152].

This chapter discusses the principles that enable large-scale Web design mining,
the implementation of the Webzeitgeist architecture, the repository crawled from
the Web, and the API that exposes it.

3.2 Principles for Design Mining

To support design mining applications, the Webzeitgeist architecture is predicated
on four underlying principles.

3.2.1 Scalability

In rich, visual domains like Web design, the utility of data mining critically depends
on the size of the corpus: in a space with thousands of parameters, millions of
examples are necessary to extract meaningful statistics or find relevant examples
during search [81]. Webzeitgeist, therefore, is designed to scale to millions of dis-
tinct page elements. Visual and semantic features are precomputed for fast access,
stored in a relational database to facilitate complex queries, and duplicated in a key-
value store for efficient streaming. To eliminate redundant storage of shared page
resources, Webzeitgeist employs Rabin fingerprint hashing [148]. Additionally, the
Webzeitgeist server uses a large memory pool to minimize disk access, backed by a
hardware RAID controller with striping to make disk access fast when it does occur.

3.2.2 Extensibility

Since Webzeitgeist provides a general platform for design mining, not all of its
eventual uses can be foreseen. Thus, a modular architecture facilitates the addi-
tion of new data, features, and functionality. To support transparent updates, two
versions of the data store exist at all times: a production version that is exposed
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to external applications, and a staging version where new pages are added during
crawling and features are computed. To minimize code and data dependencies,
individual features are implemented as independent C++ dynamic plugin libraries.
The post-process communicates with the data store through the public API, allowing
implementation details to change as long as interfaces are preserved.

3.2.3 Completeness

Most Web mining employs static page analysis: issuing an HTTP GET request for
a given URL, storing the returned HTML, and parsing it [116]. To mine the design
of Web pages, Webzeitgeist must identify and capture every resource and DOM
property that contributes to a page’s visual appearance. Since render-time visual
properties cannot be determined through static page source analysis, Webzeitgeist
uses a layout engine to process retrieved HTML into a DOM tree, and a proxy server
to dynamically intercept all the resource requests made by the engine during this
process.

3.2.4 Consistency

Dynamically-generated content poses another complication for design mining.
DHTML and client-side scripting allow arbitrary code to modify the DOM based on
requests made to external resources. Thus, it is nearly impossible to archive pages in
a format that guarantees reproducible rendering in a browser without altering their
source [144, 5]. This ephemerality frustrates many machine learning and statisti-
cal analysis applications, which expect data to remain consistent between accesses.
Webzeitgeist, therefore, renders a canonical view of each page during crawling, and
serializes the resultant DOM and all of its properties to the data store. Client ap-
plications and feature computations access this static snapshot of a page’s design
instead of interacting with the layout engine directly, and can query render-time
properties without having to re-render the page.
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3.3 Implementation

The Webzeitgeist architecture comprises five integrated components: the Web
crawler, the proxy server, the data store, the post-process, and the API (Figure 3.2).
The crawler loads pages through the proxy, which writes them to the data store.
Post-processes then run on the stored pages to compute high-level features and
data structures, after which client applications can access the repository through
the API.

3.3.1 Web Design Crawler

The Web crawler consists of a set of parallel browser processes, which load pages
from the Web to add them to the Webzeitgeist repository. The crawler builds a
queue of URLs from a seed list. At each stage of the crawl, a browser process
dequeues a URL, checks that it is not already in the repository, and requests the
corresponding page. Once the page is downloaded, its HTML is parsed, and all
external links are extracted and added to the queue. The Webzeitgeist crawler
loads each page in a Webkit browser window [177], computes its DOM tree, and
renders it. This rendering and the computed DOM are then saved in the staging
store.

3.3.2 Caching Proxy Server

To identify and store a page’s resources, the system routes all browser requests
through a custom Web proxy. The proxy sits between the Web and the crawler, and
connects directly to the Webzeitgeist data store. The proxy intercepts each resource
request made by a page, downloads it from the Web, and hashes its contents. If the
file does not already exist in the store, it is added.

The proxy server is also responsible for storing the graph structure of page-
resource relationships. Since HTTP is a stateless protocol, this requires using cus-
tom HTTP headers to associate each resource request with the page that originated
it. When the crawler requests a page, the data store generates a unique identifier
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and passes it back in the response header. The crawler then uses this ID to label
each subsequent request the page makes to the proxy.

Two additional headers determine how the proxy services requests: adding them
to the store during the crawl, or serving them directly from the database during
retrieval. In the event that an application tries to retrieve a URL that does not exist
in the data store, the proxy server responds with a 404 - PAGE NOT FOUND error.

3.3.3 Post-process: Visual Segmentation

Once a page has been downloaded, converted to a DOM, rendered, and stored, a
set of post-processes are run. First, Webzeitgeist canonicalizes the DOM, so that
client applications can efficiently work with a structured, visual representation of
designs that are directly comparable between pages.

Existing page segmentation algorithms begin by partitioning the DOM into dis-
crete, visually-salient regions [28, 30, 100]. These algorithms produce good results
whenever a page’s DOM closely mirrors its visual hierarchy, which is the case for
many simple Web pages. However, these techniques fail on more complex pages.
Modern CSS allows content to be arbitrarily repositioned, meaning that the struc-
tural hierarchy of the DOM may only loosely approximate the page’s visual layout.

This dissertation introduces Bento, a page segmentation algorithm that “re-
DOMs” the input page in order to produce clean and consistent segmentations
(Figure 3.5). The algorithm comprises three stages. First, Bento extracts all the
DOM elements that contribute to a page’s visual appearance, while maintaining the
DOM’s hierarchical relationships. Next, the hierarchy is reshuffled so that parent-
child relationships in the tree correspond to visual containment on the page. Each
DOM node is labeled with its rendered page coordinates and checked to verify that
its parent is the smallest region that contains it. When this constraint is violated, the
DOM is adjusted accordingly, taking care to preserve layout details when nodes are
reshuffled. Third, redundant nodes are removed so that there is exactly one node
per unique page region. These three steps canonicalize the DOM to more closely
match the visual hierarchy of the page.
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Figure 3.3: The semantic and computer vision features that Webzeitgeist computes
over page elements.

Bento segmentations serve as the base representation for algorithms described
in chapters 4, 5, and 6. Bento is available as a web service and a BSD open-source
C++ library at https://code.google.com/p/lib-bento.

3.3.4 Post-process: Visual Element Descriptors

For each element in the Bento segmentation, the system computes a set of semantic
and computer vision features and stores them (see Figure 3.3).

Next, the post-process coalesces each node’s visual, semantic, and render-
time features into a vector descriptor, exposing page properties in a convenient
form for design mining applications. Numeric features are normalized to the
range [0, 1], and string-based attributes are binarized based on their possible val-
ues to generate dictionary-length bit vectors. After this conversion, each page
node is associated with a 1679-dimensional descriptor consisting of 691 render-
time HTML and CSS properties computed by the DOM, 960 GIST scene descriptors
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Figure 3.4: The schema for the Webzeitgeist data store, showing the five tables that
comprise the SQL database and their contents. This de-normalized structure, with
replicated Page, DOM, and Block IDs, facilitates fast retrievals.

computed on the node’s rendering [139], and 28 structural and computer vision
properties.

After the feature vectors are computed, the post-process restructures the table
in which DOM properties are stored. During the crawl, DOM tree data is added to a
wide table which facilitates fast insertions but results in slow retrieval; partitioning
this table into a star schema reduces retrieval times by an order of magnitude [168].
After this restructuring, the post-process migrates the data store from the staging
environment to production.

3.3.5 Data Store

The Webzeitgeist data store comprises two databases: a NoSQL database for page
resources, binary data, and the vector descriptors for page nodes; and a relational
SQL database for DOM nodes and properties, the visual page hierarchies, and the
associated vision and semantic feature values.

The NoSQL database is a MongoDB instance [130], which provides fast access
to binary files and structures too large to be efficiently stored in SQL tables, while
simultaneously supporting dynamic queries and aggregation. This database con-
tains the full HTML of every crawled page, its resources, and the high-dimensional
feature descriptor for each visual hierarchy node.
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The relational database is a MySQL instance [135], comprising five tables:
PROXY CONTENT, PROXY LINKS, DOM NODES, VISUAL BLOCKS, and FEATURES (Fig-
ure 3.4). The PROXY CONTENT table contains metadata for every URL requested by
pages during crawling, describing where the resource is from, its identifier in the
NoSQL store, when it was retrieved, and a Rabin fingerprint hash of its contents.
The PROXY LINKS table associates pages with a list of the resources upon which they
depend. The DOM NODES table contains a record of each DOM node encountered
in the crawl, along with pointers to its parent page and node; its type, name, value,
and inner HTML; and all 258 render-time DOM attributes defined by the HTML4
and CSS3 standards [91, 181]. The VISUAL BLOCKS table contains the page ele-
ments that result from the visual segmentations performed during post-processing.
The FEATURES table stores the visual and semantic features computed for each such
block. For fast retrieval, tables are denormalized with replicated Page, DOM, and
Block IDs.

3.3.6 API

Clients access the Webzeitgeist repository through a RESTful API, loading the ap-
propriate endpoint URL and receiving JSON data in return [43]. Three modes are
available for requesting data. The first allows direct access to design properties based
on unique identifiers. The second allows clients to stream batches of data from the
repository with a single request.

For more complex access patterns, the API also provides a custom JSON-based
design query language (DQL). DQL predicates allow for filtering based on combi-
nations of DOM attributes and computed visual features. When issuing queries,
the client can also specify a list of properties that should be returned by the API
call, keeping result sets succinct. The API transparently converts DQL queries into
SQL and Mongo Query Language, sanitizes them to prevent injection attacks, and
returns the results in JSON.
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3.3.7 Server Hardware

The Webzeitgeist repository is hosted on a twelve-core 2.4GHz Intel Xeon server to
allow complex DQL queries to be executed efficiently. The server contains 48 GB
of RAM to facilitate caching and ensure that the SQL index fits in memory. The
server’s 4TB data store consists of fourteen 600GB 15K RPM SAS drives in a RAID
10 configuration, backed by a hardware RAID controller with a 1GB cache. The
drive array is capable of sustaining 6GB/s throughput when data is being streamed
from disk.

3.4 The Webzeitgeist Dataset

The Webzeitgeist crawl selection policy was optimized for quality, diversity, and pro-
viding a holistic view of Web design practice. To guarantee that the crawl included
high quality designs, it was seeded with pages from the Alexa Top 500, the Webby
Awards gallery, and popular design blogs. To build a diverse repository, Webzeitgeist
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three different browser window sizes to
identify responsive Web designs, or pages with layouts that adapt to the viewing
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This type of mining could help users understand design patterns across different
form factors. Mobile and tablet pages are only saved to the database if they are
different from the desktop version, which is determined by comparing change in
screenshot aspect ratio between the three sizes. Pages designed for just desktop
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viewing, serve the same content and design regardless of browser window dimen-
sions, and therefore, their desktop, mobile, and tablet screenshots usually all have
a similar aspect ratio. If pages are non-responsive, the crawl does an additional test
for mobile- and tablet-specific designs by spoofing user-agent headers.

The resultant dataset contains 103,744 Web pages, of which 5644 are mobile de-
signs and 5528 are tablet designs. These pages span 43,743 domains and are com-
prised of 143.2 million DOM nodes and 12.7 million visual blocks. The raw HTML
content of these pages and their referenced resources together require 425GB of
disk space; the SQL database requires 187GB. The pages reference over 5.3 million
HTML, CSS, JavaScript, image, and other resources, including Flash, movie, and
audio files (see inset figure).

The Webzeitgeist crawl was a computationally intensive task, requiring more
than 35 CPU days of processing. As a representative example, the CHI 2013 home-
page http://chi2013.acm.org references two style sheets, four JavaScript files,
and five images for a total of 480KB of raw content. The crawler downloaded the
page on September 13th, 2012, in 3.5 seconds. The DOM, which comprised 251
nodes, was computed in 0.1 seconds and stored via the API in 0.47 seconds.

The visual segmentation algorithm ran for 2ms, producing 61 visual blocks; vi-
sual feature computation ran for 13.53 seconds. Writing this segmentation and the
associated features to the database took another 1.04 seconds, for a total processing
time of 18.64 seconds.

3.5 Capabilities

Webzeitgeist’s data structures and API allow users to efficiently aggregate many
types of design data, which can easily be imported into visualization or statistical
analysis software.

For instance, we can query Webzeitgeist to return all the distinct cursors in the
repository by writing the following DQL query:
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Figure 3.6: The 295 distinct cursors in the Webzeitgeist repository, fetched in 47.8
seconds. This query searches the CSS cursor property on DOM nodes, looks up the
ID in the PROXY CONTENT table, and fetches the associated file from NoSQL.

POST, /v1/dom.json
query = {
  "$select": [
    {"@styles": {"$distinct": "cursor"}
  ]
}

This DQL query — which executed in 47.8 seconds — first finds cursors by
examining the CSS cursor property across DOM nodes, and then fetches the corre-
sponding files from the NoSQL database. A “cursory” inspection of the 295 results
shows that arrows, hands, cartoon characters, and celebrity faces are all popular
choices (Figure 3.6).

Webzeitgeist can answer similar questions about popular text color choices, for
instance by computing a cumulative distribution function over the CSS color prop-
erty:

0.3

0.7

The forty most popular text colors in the database account for nearly 70 percent
of all text color; most are shades of grey.

Webzeitgeist also affords the ability to examine distributions over both page-
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Figure 3.8: Graph reproduced from Google Web survey of popular HTML class
names from 2005 [184].

and node-level Web properties. For instance, Webzeitgeist can be used to compute
statistics on the visual complexity of pages. Figure 3.7 (top row) shows that the
mode depth of a page’s DOM tree is six, and that most pages contain between
50 and 200 DOM nodes. To investigate the cause of the sharp spike in the latter
histogram, users can request IDs for pages with only a single DOM node and inspect
their HTML: unsurprisingly, these pages are predominantly Flash-based.

Similarly, users can inspect common properties for individual page assets. Calcu-
lating a histogram over the aspectRatio of visual nodes reveals that there are many
square elements, but that page elements, on average, are wider than they are tall
(Figure 3.7, bottom left). Computing a histogram over the CSS opacity property
and examining values less than 1, reveals sharp peaks at .5, .65, .75, and .8 (Fig-
ure 3.7, bottom right).
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Since Webzeitgeist stores HTML properties in addition to design data, we can
also use the repository to revisit HTML demographics in a new way. In 2005, Google
released the results of a large-scale survey of popular HTML class names [184]
(Figure 3.8). Webzeitgeist allows us to take this study one step further, and un-
derstand the relationship between static HTML properties and dynamic render-time
ones. Since Webzeitgeist records the render-time bounding box for each DOM node,
we can compute spatial probability distributions for the most popular CSS selectors
(Figure 3.9). The striking patterns that result indicate that the visual positions and
semantic roles of some page elements are highly correlated.

3.6 Discussion and Future Work

There are a number of directions for future work. Scaling the database by several
orders of magnitude would increase the accuracy and utility of many design-mining
applications. While the current indexing strategy for Webzeitgeist should scale to
about five million pages, crawling a more substantial portion of the Web would
require porting the infrastructure to a distributed computing and storage platform.

In addition to crawling more pages, altering the crawl’s selection policy to cap-
ture additional information from each visited site could provide new ways of ana-
lyzing Web design practice. Currently, the crawl only stores a single copy of each
resolved URL; however, aggregating multiple versions of pages over time could
allow users to build data-driven models of Web design evolution [5, 176]. Addi-
tionally, designers might want to study responsive design at a finer granularity. We
currently check for mobile and tablet versions of pages, but the Time’s online mag-
azine has a style sheet detailing layout changes triggered by over 100 different
browser widths [126]!

Perhaps the most exciting avenues for future work are using the repository to
realize new machine learning applications and reimplementing existing methods
at scale [96, 153, 175]. The Webzeitgeist platform could be leveraged to take ad-
vantage of recent advances in unsupervised learning [114] or used to bootstrap
crowdsourced data collection for supervised applications.
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Figure 3.9: Spatial probability distributions for frequently occurring HTML id and
class attributes demonstrate striking visual correlations.



Chapter 4

Design Search

The Webzeitgeist design mining platform enables content producers to answer ques-
tions about design practice and software developers to build next-generation design
tools. Webzeitgeist significantly lowers the barrier to data-driven Web design, facili-
tating analysis on a scale 50–300 times larger than prior work [96, 153]. This chap-
ter illustrates how Webzeitgeist can be used to implement a diverse set of design-
based retrieval interactions, including constraint-, keyword-, and example-based
search. Designers can query Webzeitgeist to search for examples of design patterns
and trends [54, 83], without relying on manual curation. Application developers
can apply machine learning techniques to learn classifiers and similarity metrics
without incurring the overhead of crawling, rendering, and sanitizing Web data.

4.1 Design Queries

Designers are often interested in understanding the context of particular patterns
and trends [54]. Many design blogs maintain small, curated sets of examples show-
casing trending Web design techniques. For instance, in 2013, examples of “flat”
page design (i.e., pages that do not use drop shadows, gradients, and textures)
were featured in many design blogs [2, 1].

To give designers more powerful search and collection capabilities, Webzeitgeist
introduces the ability to quickly create dynamic collections that exhibit particular

37
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Figure 4.1: Four of the 68 query results for pages with horizontal layouts. Blogs,
image/photo galleries, and vector art pages are a few of the representative styles in
the results set.

Figure 4.2: Selections from some of the 4943 pages containing <CANVAS> ele-
ments in the Webzeitgeist repository, demonstrating interactive interfaces, anima-
tions, graphs, reflections, rounded corners, and custom fonts.
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design characteristics. For instance, one distinctive technique discussed on design
blogs is the use of long, scrolling horizontal layouts. To find such pages, we queried
Webzeitgeist for pages with aspectRatio greater than 10.0:

POST, /v1/pages.json
query = {
  "$select": [{"$distinct": "page_id"}],
  "$where" : [
    {"@visual": {"aspectRatio": {"$gt": 10} } }
  ]
}

This query produced 68 horizontally-scrolling pages in 1.1 seconds. Figure 4.1
shows a few representative results.

Querying Webzeitgeist with constraints based on HTML markup can also shed
light on design trends. The W3C describes the <CANVAS> element — introduced
in HTML5 — as a scriptable graphics container. The specification, however, gives
little insight into how the tag is actually used. Webzeitgeist returns all 201,658
<CANVAS> elements in the database in 2.4 minutes. Figure 4.2 shows representa-
tive uses.

Webzeitgeist allows us to investigate another problematic aspect of Web de-
sign: typography. Although the CSS @font-face rule was introduced in 1998 [29],
technical and licensing issues with embedding custom Web fonts have traditionally
relegated complex typographic effects to images. We can use Webzeitgeist to search
for examples of prominent Web font typography, querying for nodes with a CSS
font-size property greater than 100 pixels. Figure 4.3 shows a few of the 6856
results, which occur in only 1657 distinct pages.

We can build more complex queries by specifying more constraints. To learn the
different ways in which semi-transparent overlays are used, we queried for nodes
with a solid background color where the alpha value of the CSS background-color

property is between 0 and 1 (Figure 4.4).

We can also use Webzeitgeist to construct queries over high-level design con-
cepts. Suppose a designer wants to browse “search engine-like” pages. This concept
is loaded with design constraints, but we can approximate it in DQL as a query for
pages with a centered <INPUT> element and low visual complexity:
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Figure 4.3: Query results for nodes containing large typography, demonstrating
large text in logos, site titles, hero graphics, and background effects. The query
identified 6856 DOM nodes from 1657 distinct pages, and executed in 56 seconds.

POST, /v1/pages.json
query = {
  "$select": [{"page_id": 1}],
  "$where": [
    {
      "@dom": {
        "tagName": "INPUT",
        "type": "text",
      "@visual": {
        "leftSidedness": {"$or": {"$gte": 0.4}, {"$lte":0.6}},
        "topSidedness":  {"$or": {"$gte": 0.4}, {"$lte":0.6}}
      }
    },
    {"@visual": {"$cnt": {"$lt": 50} } }
  ]
}

Figure 4.5 shows a few results from this query.

Similarly, attribute queries can be composed to search for pages with specific
visual layouts. Figure 4.6 shows a sample layout with a large header, a top naviga-
tion bar, and a large body text node. We can encode this layout in a DQL query that
searches for pages with a header that takes up more than 20 percent of the page’s
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Figure 4.4: Query results for semi-transparent overlays. The query identified
9878 DOM nodes from 3435 distinct pages, and executed in 48.1 seconds. Semi-
transparent overlays are often used on top of photographs, either as a way to dis-
play content over of a busy photographic background (top) or to frame captions
(bottom).
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Figure 4.5: Query results for “search engine” pages: roughly centered (vertically
and horizontally) text INPUT elements, and fewer than 50 visual elements on the
page. This query produced 209 pages and executed in 3.9 minutes. Some login and
signup pages are also returned (bottom right).

top nav bar

layout query

large 
text

block

large header

Figure 4.6: Five of the 20 search results for the three-part DQL layout query visual-
ized on the left. The query, which executed in 2.1 minutes, returns pages that share
a common high-level layout, but exhibit different designs.



4.2. KEYWORD AND EXAMPLE-BASED SEARCH 43

area, a navigation element that is positioned in the top 10 percent of the page’s
height, and a text node that contains more than 50 words. This example illustrates
the kinds of applications that Webzeitgeist might engender: imagine a search inter-
face that automatically formulates queries from sketches like the one shown in the
figure.

4.2 Keyword and Example-based Search

While DQL allows designers to query based on specific visual properties, not all
users will want to interact with Webzeitgeist at the level of code. Webzeitgeist also
enables a new kind of design-based machine learning, which can support higher-
level search techniques like keyword and example-based search. For the first time,
applications can stream structured visual descriptors for page elements from a cen-
tral repository. Moreover, Webzeitgeist’s extensible architecture allows new data to
be collected and integrated with the repository for supervised learning applications,
for instance via crowdsourcing.

4.2.1 Keyword Search

We used Webzeitgeist as a backend to train structural semantic classifiers for con-
cepts like ARTICLE TITLE, ADVERTISEMENT, and PRODUCT IMAGE (discussed in more
detail in Chapter 6). In an online study, we collected a set of more than 20,000
semantic labels over more than 1000 distinct pages. We then used the descriptors
associated with page elements to train 40 binary Support Vector Machine classifiers,
reporting an average test accuracy of 77 percent. By running these classifiers over
the entire Webzeitgeist data set, we enable keyword search for page elements like
“advertisement”, “logo”, or “blog post.”
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element query

element query

page query

Figure 4.7: Top search results from querying the repository using the learned dis-
tance metric and three query elements. These results demonstrate how Webzeitgeist
can be used to search for design alternatives (top, middle), and to identify template
re-use between pages (bottom).

Figure 4.8: The top matches for the first (page) query in Figure 4.7 using only the
vision-based GIST descriptors. While these elements are visually reminiscent of the
query, most of them bear little structural or semantic relation to it.
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4.2.2 Query-by-example

Machine learning techniques can also be used to enable example-based search over
the repository. Using the structural semantic label data, we induced a distance
metric in the 1679-dimensional descriptor space using OASIS, a metric-learning
algorithm originally developed for large-scale image comparison [38]. The method
takes as input sets of identically-labeled page elements, and attempts to learn a
symmetric positive-definite matrix that minimizes interset distances. Once learned,
this metric can be used to perform query-by-example searches on page regions via a
nearest-neighbor search in the metric space. These nearest-neighbor computations
can be performed in realtime via locality sensitive hashing [95].

Example-based search provides a powerful mechanism for navigating complex
design spaces like the Web [153]. Figure 4.7 shows three example queries and their
top results, demonstrating how Webzeitgeist can be used to search for alternatives
for a given design artifact, and to identify template reuse between pages. The
utility of this search interaction critically depends on the full Webzeitgeist feature
space. For comparison, Figure 4.8 shows nearest-neighbor results for the top query
in Figure 4.7 using only the vision-based GIST descriptors. While these elements
are visually reminiscent of the query, they bear little structural or semantic relation
to it.

4.3 A Design-based Search Engine

We hypothesize that designers will utilize these different retrieval strategies in con-
cert during the design process. Thus, we built a real-time design search engine that
supports all of the search interactions described in this chapter: design curation via
DQL, query-by-example, and keyword search.

To see the value of this engine, consider the following scenario. Dave is about
to kick off a new marketing startup and wants to scout out the competition. Doing
a keyword search for “marketing,” he finds that the French company Milky has
an attractive Web site (Figure 4.9). To find examples of other pages with similar
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Figure 4.9: The Webzeitgeist search engine supports three types of keyword queries:
domain (e.g., blog, news), style (e.g., colorful, funky), and structural semantics
(e.g., logo, advertisement). Structural semantic labels are assigned to elements
based on a set of classifiers trained on crowdsourced tags. These are a few of the
crowdsourced results for the domain label “marketing.”
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Figure 4.10: The design search engine also supports query-by-example searches.
Users can select pages and page elements as queries to find similar design elements
in the repository. The results shown here share the same dark-light-dark striping
exhibited by the query page. Locality sensitive hashing is used to speed up nearest-
neighbors computations in the learned metric space.
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Figure 4.11: By zooming in on a page in the search engine, the user can inspect
and copy HTML and CSS properties assigned to particular page elements (top).
Moreover, users can also select properties in the inspector (e.g., font-family) to
perform DQL queries that return other page elements that have the same properties
(bottom).
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designs that could inform his brand, he selects Milky’s page and does a query-by-
example search for other similar design elements in the database (Figure 4.10).
Once Dave finds a page that he likes, the search engine allows him to close the loop
and inspect the page’s implementation (Figure 4.11, top). Moreover, if Dave likes a
particular aspect of the design (e.g., a font that was used), he can select that field in
the search engine’s inspector and issue a DQL search to find other design elements
that share its properties (Figure 4.11, bottom).

The query-by-example search results are computed using the trained distance
metric combined with locality sensitive hashing (LSH) to make nearest-neighbor
queries in the feature space run in real-time [95]. A drawback of LSH is that it
requires a large number of hash tables to produce high-quality search results, all of
which must be kept in memory during runtime. In the future, we may apply more
advanced techniques such as multi-probe LSH [125] or algorithms for efficient K-
Nearest Neighbor Graph construction [49] to mitigate these memory requirements.

For this search interface, we also crowdsourced more than 25,000 style (e.g.,
“minimal”, “clean”) and more than 20,000 domain (e.g., “business”, “education”)
labels over more than 3000 distinct pages. In the future, we hope to use these labels
to bootstrap classifiers that can generalize over the entire dataset.

4.4 Discussion and Future Work

This chapter demonstrates how Webzeitgeist enables design-based search at un-
precedented scale, and how it can be used to rapidly prototype many different
search interactions. An important direction for future work is understanding when
different search strategies are useful during the design process. What types of
search mechanisms support exploratory tasks? Do design professionals and novices
exhibit distinct search patterns?

By logging user interactions in the search engine, we hope to understand how
to better index examples (i.e., what features and metadata to store) and how to
expose information to users (i.e., search strategies). Other retrieval mechanisms
such as sketching [188] and faceted metadata search [79] may also prove useful.
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Chapter 5

Automatic Retargeting

While the retrieval systems proposed in Chapter 4 can help users identify, aggre-
gate, and understand design data, they do little to help designers leverage existing
designs to produce new pages. This chapter introduces the Bricolage algorithm for
transferring design and content between Web pages. Bricolage employs a novel,
structured-prediction technique that learns to create coherent mappings between
pages by training on human-generated exemplars. The produced mappings are
then used to automatically transfer the content from one page into the style and
layout of another. We show that Bricolage can learn to accurately reproduce human
page mappings, and that it provides a general, efficient, and automatic technique
for retargeting content between a variety of real Web pages.

5.1 Introduction

Despite the ready availability of design examples on the Web — Google had in-
dexed more than one trillion unique URLs by 2008 [8] — little tool support exists
for adapting existing designs to new purposes. While some prior work focused
on facilitating easier copy-paste-adapt workflows for individual Web elements [57,
115, 33], adapting the gestalt structure of Web designs remains a manual, tedious
process, or relies heavily on templates which homogenize page structure and yield
cookie-cutter designs [72].

51
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Figure 5.1: Bricolage computes coherent mappings between Web pages by matching
visually and semantically similar page elements. The produced mapping can then
be used to guide the transfer of content from one page into the design and layout
of the other.
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In this chapter, we introduce Bricolage to answer the question: what if any page
on the Web could be a design template? The word “bricolage” refers to the creation
of a work from a diverse range of available things. The Bricolage algorithm matches
visually and semantically similar elements in pages to create coherent mappings
between them. These mappings can then be used to automatically transfer the
content from one page into the style and layout of the other (Figure 5.1).

Bricolage uses structured prediction [40] to learn how to transfer content be-
tween pages. It trains on a corpus of human-generated mappings, collected using a
Web-based crowdsourcing interface. In an online study, 39 participants with some
Web design experience specified correspondences between page regions and an-
swered free-response questions about their rationale.

These mappings guided the design of Bricolage’s matching algorithm. We found
consistent structural patterns in how people created mappings between pages. Par-
ticipants not only identified elements with similar visual and semantic properties,
but also used their location in the pages’ hierarchies to guide their assignments.
Consequently, Bricolage employs a novel tree-matching algorithm that flexibly bal-
ances visual, semantic, and structural considerations. We demonstrate that this
yields significantly more human-like mappings than using any one criteria alone.

This chapter presents the data collection study, the mapping algorithm, and the
machine learning method. It then shows results demonstrating that Bricolage can
learn to closely produce human mappings. Lastly, it illustrates how Bricolage is
useful for a diverse set of design applications: for rapidly prototyping alternatives,
retargeting content to alternate form factors such as mobile devices, and measuring
the similarity of Web designs.

5.2 Collecting and Analyzing Human Mappings

To learn how people map content between pages, we created the Bricolage Collec-
tor, a Web application for gathering human page mappings from online workers
(Figure 5.2).
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Figure 5.2: The Bricolage Collector Web application asks users to match each high-
lighted region in the content page (left) to the corresponding region in the layout
page (right).

5.2.1 Study Design

We selected a diverse corpus of 50 popular Web pages chosen from the Alexa Top
100, Webby award winners, highly-regarded design blogs, and personal bookmarks.
Within this corpus, we selected a focus set of eight page pairs. Each participant was
asked to match one or two pairs from the focus set, and one or two more chosen
uniformly at random from the corpus as a whole. The Collector gathered data
about how different people map the same pair of pages, and about how people map
many different pairs. We recruited 39 participants through email lists and online
advertisements. Each reported some Web design experience.

5.2.2 Procedure

Participants watched a tutorial video demonstrating the Collector interface and
describing the task. The video instructed participants to produce mappings for
transferring the left page’s content into the right page’s layout. It emphasized
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that participants could use any criteria they deemed appropriate to match ele-
ments. After the tutorial, the Collector presented participants with the first pair
of pages.

The Collector interface iterates over the segmented regions in the content page
one at a time, asking participants to find a matching region in the layout page.
The user selects a matching region via the mouse or keyboard, and confirms it by
clicking the MATCH button. If no good match exists for a particular region, the user
clicks the NO MATCH button. After every fifth match, the interface presents a dialog
box asking,“Why did you choose this assignment?” These rationale responses are
logged along with the mappings, and submitted to a central server.

5.2.3 Results

Participants generated 117 mappings between 52 unique pairs of pages: 73 map-
pings for the 8 pairs in the focus set, and 44 covering the rest of the corpus.
They averaged 10.5 seconds finding a match for each page region (min = 4.42s,
max = 25.0s), and 5.38 (�2

= 4.23s, min = 4.42s, max = 25.0s), and 5.38 minutes
per page pair (min = 1.52m, max = 20.7m). minutes per page pair (�2

= 3.03m,
min = 1.52m, max = 20.7m). Participants provided rationales for 227 individual
region assignments, averaging 4.7 words in length.

Consistency

We define the consistency of two mappings for the same page pair as the percentage
of page regions with identical assignments. The average inter-mapping consistency
of the focus pairs was 78.3% (�2

= 10.2%, min = 58.8%, max = 89.8%). Moreover,
37.8% of page (min = 58.8%, max = 89.8%). 37.8% of page regions were mapped
identically by all participants.
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Rationale

Participants provided rationales like “title of rightmost body pane in both pages."
We analyzed these rationales with Latent Semantic Analysis (LSA), which extracts
contextual language usage in a set of documents [45]. LSA takes a bag-of-words
approach to textual analysis: each document is treated as an unordered collec-
tion of words, ignoring grammar and punctuation. We followed the standard ap-
proach, treating each rationale as a document and forming the term-document ma-
trix where each cell’s value counts the occurrences of a term in a document. We
used Euclidean normalization to make annotations of different lengths comparable,
and inverse document-frequency weighting to deemphasize common words like a
and the.

LSA decomposes the space of rationales into semantic “concepts.” Each concept
is represented by a principal component of the term-document matrix, and the
words with the largest projections onto the component are the concept’s descriptors.

For the first component, the words with the largest projections are: footer, link,
menu, description, videos, picture, login, content, image, title, body, header, search,
and graphic. These words pertain primarily to visual and semantic attributes of
page content.

For the second component, the words with the largest projections are: both,
position, about, layout, bottom, one, two, three, subsection, leftmost, space, column,
from, and horizontal. These words are mostly concerned with structural and spatial
relationships between page elements.

Structure and Hierarchy

Two statistics examine the mappings’ structural and hierarchical properties: one
measuring how frequently the mapping preserves ancestry, and the other measuring
how frequently it preserves siblings.

We define two matched regions to be ancestry preserving if their parent regions
are also matched (Figure 5.3, left). A mapping’s degree of ancestry preservation is
the number of ancestry-preserving regions divided by the total number of matched
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Figure 5.3: Examples of ancestry preservation (left) and sibling preservation (right)
in page mappings.

regions. Participants’ mappings preserved ancestry 53.3% of the time (�2
= 19.6%,

min = 7.6%, max = 95.5%).

Similarly, we define a set of page regions sharing a common parent to be sibling
preserving if the regions they are matched to also share a common parent (Figure
5.3, right). Participants produced mappings that were 83.9% sibling preserving
(�2

= 8.13%, min = 58.3%, max = 100%).

5.3 Computing Page Mappings

The study’s results suggest that mappings produced by different people are highly
consistent: there is a “method to the madness” that may be learned. Moreover,
the results suggest that algorithmically producing human-like mappings requires
incorporating both semantic and structural constraints, and learning how to bal-
ance between them. The visual hierarchy computed by Webzeitgeist for each page
provides a convenient starting point to compute page mappings, since the represen-
tation encodes both ancestry and sibling relationships as well as per-element visual
and semantic features.

The problem of comparing trees arises naturally in diverse fields, including com-
putational biology, compiler optimization, natural language processing, and com-
puter vision, and even HTML pattern matching [18, 87, 101]. The most common
measure for gauging the similarity of two labeled trees is the edit distance metric,
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first introduced by Tai [173], which computes the cost of transforming one tree into
another through a sequence of elementary node operations such as insertion, dele-
tion, and renaming. To calculate this distance, a minimum-cost correspondence is
established between the nodes of the two trees in a process known as tree matching.

In the classical formulation, these correspondences are rigid: they are not al-
lowed to violate ancestor-descendant relationships between nodes, nor the left-
to-right order of a node’s children. As a result of these structural requirements,
the problem admits an efficient dynamic programming algorithm, and the optimal
matching can be found in cubic time [46]. If the ordering requirement is removed
(but the ancestry requirement maintained), the edit distance computation becomes
NP-complete [190], and approximation algorithms are necessary [161].

In some domains, the most appropriate matchings may not strictly preserve an-
cestry. For instance, while reparenting even a single node in a phylogenetic tree of
bacteria would destroy its validity, the ancestry relationships in the Document Ob-
ject Model tree of a Web page are less prescriptive: moving a search bar from header
to footer results in a different — but largely equivalent — page. This pattern follows
for many other tree structures in design and data management, in which hierarchy
plays an important — but not definitive — role [36, 117, 163].

We introduce flexible tree matching, which relaxes the requirement that the pro-
duced correspondence strictly preserve ancestry relationships. Instead, the algo-
rithm provides a parameterized framework for controlling the relative import of
labeling and hierarchy. The algorithm uses an edge-based cost model to match
nodes with similar labels while simultaneously penalizing matchings which induce
violations of the hierarchy or break up sibling groups. Determining the minimum
edit distance between trees then reduces to finding a minimum-cost matching under
this model.

We prove that flexible tree matching is NP-complete in the strong sense, and
give a corresponding stochastic approximation algorithm. We also show how to
learn the parameters of the model from a corpus of examples via standard struc-
tured prediction techniques, and summarize results from applying the method to
automatic retargeting in Web design.
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5.4 A Flexible Model for Tree Matching

A tree matching is an injective binary relation defined between two labeled trees T1

and T2. The relation can be viewed as a bipartite graph between the trees’ nodes,
with edges representing editing operations for transforming one tree into the other.
Edges identifying nodes with dissimilar labels represent relabeling operations, while
nodes which are not mapped correspond to insertions or deletions.

To differentiate between mappings, classical tree matching requires a model that
defines the relabeling cost between nodes and the insertion/deletion cost for nodes
which are not matched. Given such a model, the tree-matching problem is to find
a lowest-cost mapping between trees which preserves ancestry: once two nodes
m 2 T1 and n 2 T2 are matched, the descendants of m can only be matched to
descendants of n, and vice versa.

Flexible matching relaxes this rigid ancestry requirement in favor of a tunable
edge-based cost model. It forms a complete bipartite graph G between T1 [ {⌦1}
and T2 [ {⌦2}, where ⌦1 and ⌦2 are auxiliary no-match nodes. Each edge in G

is assigned a cost comprising three terms: a relabeling term cr, penalizing edges
that connect nodes with different labels, an ancestry term ca, penalizing edges that
violate ancestry relationships, and a sibling term cs, penalizing edges that break
up sibling groups. The cost of an edge c(e) is the sum of these three terms, and
the goal of flexible tree matching is to produce a set of edges M ⇢ G such that
every node in T1 [ T2 is covered by precisely one edge and the total mapping cost
c(M) =

1
|T1|+|T2|

P
e2M c(e) is minimized.

5.5 Exact Edge Costs

We define the cost of an edge e 2 T1 ⇥ T2,

c(e) = cr(e) + ca(e) + cs(e).
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Figure 5.4: Flexible tree matching determines the ancestry penalty for an edge
e = [m,n] by counting the children of m and n which induce ancestry violations.
In this example, n0 is an ancestry-violating child of n because it is not mapped to a
child of m; therefore, n0 induces an ancestry cost on e.

For edges in G connecting tree nodes to no-match nodes, we fix the cost c(e) = wn,
where wn is a constant no-match penalty weight.

The relabeling term cr([m,n]) defines the cost of swapping the labels of nodes
m and n. This function is domain-dependent, and user-specified. If the labels are
identical, cr([m,n]) = 0.

The ancestry cost ca(·) penalizes edges that violate ancestry relationships be-
tween the trees’ nodes. Consider a node m 2 T1, and let C(m) denote the children
of m and M(m) denote the image of m in the matching. We define the ancestry-
violating children of m, V (m), to be the set of m’s children that map to nodes that
are not M(m)’s children, i.e.,

V (m) =

�
m

0 2 C(m) | M(m

0
) 2 T2 \ C(M(m))

 
,

and define V (n) symmetrically. Then, the ancestry cost for an edge is proportional
to the number of ancestry violating children of its terminal nodes

ca([m,n];M) = wa (|V (m)|+ |V (n)|) ,

where wa is a constant ancestry weight (see Figure 5.4).
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The sibling cost cs(·) penalizes edges that fail to preserve sibling relationships
between trees. To calculate this term, we first define a few tree-related concepts. Let
P (m) denote the parent of m. The sibling group of a node m comprises the children
of its parent: S(m) = {C(P (m))}. Given a mapping M , the sibling-invariant subset
of m, IM(m), is the set of nodes in m’s sibling group that map to nodes in M(m)’s
sibling group, i.e.,

IM(m) =

�
m

0 2 S(m) | M(m

0
) 2 S(M(m))

 
;

the sibling-divergent subset of m, DM(m), is the set of nodes in m’s sibling group
that map to nodes in T2 not in M(m)’s sibling group,i.e.,

DM(m) =

�
m

0 2 S(m) \ IM(m) | M(m

0
) 6= ⌦2

 
;

and the set of distinct sibling families that m’s sibling group maps into is

FM(m) =

[

m02S(m)

P (M(m

0
)).

We define all corresponding terms for n symmetrically, and then compute the
total sibling cost

cs([m,n];M) = ws

✓
|DM(m)|

|IM(m)||FM(m)| +
|DM(n)|

|IM(n)||FM(n)|

◆
,

where ws is a constant sibling violation weight. The two ratios in the cost in-
crease when siblings are broken up by the matching (i.e., their images have different
parents), and decrease when siblings groups are maintained (see Figure 5.5). The
FM(·) terms are included to guarantee that the total sibling penalty contributed by
a tree is bounded by the number of nodes it contains.
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Figure 5.5: To determine the sibling penalty for an edge e = [m,n], the algorithm
computes the sibling-invariant and sibling-divergent subsets of m and n. In this
example, IM(n) = {n0} and DM(n) = {n00}; therefore, n0 decreases the sibling cost
on e and n

00 increases it.

5.6 Example Matchings

Figure 5.6 compares ordered, unordered, and flexible tree matching. In these exam-
ples, a simple relabeling function assigns a constant weight wr to all edges between
tree nodes with differing labels. In ordered and unordered matching, the rigid
preservation of ancestry leaves many nodes unmatched. In flexible matching, more
common structure is preserved between the trees. By varying the terms in the cost
model, different mappings can be achieved.

5.7 Flexible Tree Matching is NP-complete

We prove that flexible tree matching is strongly NP-complete. We employ a simple
version of the flexible cost model from Section 5.6, where wr = 1, wn = 1, wa = 0,
and ws = 1. That is, ancestry violations are forgiven but all relabelings, no-matches,
and sibling violations are costly. Given this model and two labeled trees T1 and T2,
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Figure 5.6: Examples of ordered, unordered, and flexible tree matchings.



64 CHAPTER 5. AUTOMATIC RETARGETING

A

B

C C

B

C C

B

C C

B B......

... ......

A

B

C C

B

C C

B

C C...... ...

x1 x2 x3 K K K

...

T1 T2

1 2 3m 1 2 m m+1 3m

Figure 5.7: The tree construction for the reduction from 3-PARTITION.

we address the decision problem “Does there exist a zero-cost flexible mapping
between the trees?”

This problem is in NP, since a proposed zero-cost mapping can be verified in
polynomial time. To show that the problem is NP-hard, we formulate a polynomial-
time reduction from 3-PARTITION [68].

The 3-PARTITION problem is to decide whether a given multiset of integers can
be partitioned into triples that all have the same sum. More formally, each instance
is a finite set S of 3m integers, where each integer xi 2 S satisfies K/4 < xi < K/2

for some bound K 2 Z+ and
P

xi = 3K. The question is to determine whether or
not S can be partitioned into m disjoint sets U1, . . . , Um, each with three elements,
so that

P
u2Ui

u = K for every i 2 {1, 2, . . . ,m}. This problem is NP-complete even
when K is polynomial in m [68].

Given a 3-PARTITION instance, we construct trees T1 and T2 as in Figure 5.7.
Each tree consists of three levels, and the nodes are labeled based on their level.
T1 represents the set S, and contains 3m subtrees on the second level, with subtree
i possessing xi leaf nodes. T2 contains m subtrees on the second level with K

children each, and 2m more one-node subtrees. Since K is polynomial in m, this
construction takes time polynomial in the size of the 3-PARTITION instance.

Under what circumstances can a zero-cost matching exist between these two
trees? Since wn = 1, such a matching must map every node in T1 to some node in
T2, and vice versa. Similarly, since wr = 1, the matching cannot identify nodes in
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different levels of the trees. Most importantly, since ws = 1, a zero-cost matching
must preserve the 3m sibling groups of leaf nodes in T1: each of the m leaf node
sibling groups in T2 must be matched to exactly three leaf node sibling groups in T1.
Thus, a zero-cost matching exists only if the corresponding 3-PARTITION instance
has a solution. Conversely, a solution to the 3-PARTITION instance indicates which
leaf node sibling groups in T1 should be matched to a common leaf node sibling
group in T2, naturally inducing a zero-cost matching.

This reduction implies that no polynomial-time (or even pseudopolynomial-
time) algorithm can exist for flexible tree matching. For this reason, we propose
a stochastic optimization algorithm for approximating the optimal matching, based
on bounding the edge costs.

5.8 Bounding Edge Costs

While the cost model described in Section 5.5 balances labeling and structural con-
straints, it cannot be used to search for an optimal mapping M

? directly. Although
cr([m,n]) can be evaluated for an edge by inspecting m and n, ca(·) and cs(·) require
information about the other edges in the mapping.

While we cannot precisely evaluate ca(·) and cs(·) a priori, we can compute
bounds for them on a per-edge basis. Moreover, each time we accept an edge
[m,n] into M , we can remove all the other edges incident on m and n from G.
Each time we prune an edge in this way, the bounds for other nearby edges may
be improved. Therefore, we employ a Monte Carlo algorithm to approximate M

?,
stochastically fixing an edge in G, pruning away the other edges incident on its
nodes, and updating the bounds on those that remain.

To bound the ancestry cost of an edge [m,n] 2 G, we consider each child of m
and n and answer two questions. First, is it impossible for this node to induce an
ancestry violation? Second, is it unavoidable that this node will induce an ancestry
violation? The answer to the first question informs the upper bound for ca(·); the
answer to the second informs the lower.
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A node m

0 2 C(m) can induce an ancestry violation if there is some edge be-
tween it and a node in T2\(C(n)[{⌦2}). Conversely, m0 is not guaranteed to induce
an ancestry violation if some edge exists between it and a node in C(n) [ {⌦2} .
Accordingly, we define indicator functions
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, n
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0 else

.

Then, the upper and lower bounds for ca([m,n];M) are
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Figure 5.8 illustrates the computation of these bounds. Pruning edges from
G causes the upper bound for ca([m,n];M) to decrease, and the lower bound to
increase.

Similarly, we can bound cs([m,n];M) by bounding the number of divergent
siblings, invariant siblings, and distinct families: |D(·)|, |I(·)|, and |F (·)|. Let
¯

S(m) = S(m) \ {m} and consider a node m

0 2 ¯

S(m). It is possible that m

0 is in
DM(m) as long as some edge exists between it and a node in T2 \ (

¯

S(n) [ {⌦2}).
Conversely, m0 cannot be guaranteed to be in DM(m) as long as some edge exists
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Figure 5.8: To bound ca([m,n];M), observe that neither m

0 nor n

0 can induce an
ancestry violation. Conversely, m00 is guaranteed to violate ancestry. No guarantee
can be made for n00. Therefore, the lower bound for ca is wa, and the upper bound
is 2wa.

between it and a node in ¯

S(n) [ {⌦2}. Then, we have
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The bounds for |IM(m)| are similarly given by
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For all nonzero sibling costs, the lower bound for |FM(m)| is 2 and the upper
bound is LD(m,n) + 1. All remaining quantities are defined symmetrically. Then,
upper and lower bounds for cs([m,n];M) are given by

Us([m,n]) =

ws

2

✓
UD(m,n)

LI(m,n)

+

UD(n,m)

LI(n,m)

◆

and

Ls([m,n]) =

ws

✓
LD(m,n)

UI(m,n) (LD(m,n) + 1)

+

LD(n,m)

UI(n,m) (LD(n,m) + 1)

◆
.

Figure 5.9 illustrates the computations of the bounds for the sibling cost term.

With bounds for the ancestry and sibling terms in place, upper and lower bounds
for the total edge cost are cU(e) = cr(e) + Ua(e) + Us(e) and cL(e) = cr(e) + La(e) +

Ls(e).
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Figure 5.9: To bound cs([m,n];M), observe that m0 is guaranteed to be in IM(m),
and m

00 is guaranteed to be in DM(m). No guarantees can be made for n

0 and n

00.
Therefore, the lower bound for cs is ws/4, and the upper bound is 3ws/4.

5.9 Approximating the Optimal Mapping

To approximate the optimal mapping M

⇤, we use the Metropolis algorithm [146].
We represent each matching as an ordered list of edges M , and define a Boltzmann-
like objective function

f(M) = exp [�� c(M)] ,

where � is a constant. At each iteration of the algorithm, a new mapping ˆ

M is
proposed, and becomes the new reference mapping with probability

↵(

ˆ

M |M) = min

 
1,

f(

ˆ

M)

f(M)

!
.

The algorithm runs for N iterations, and the mapping with the lowest cost is re-
turned.
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To initialize M , the bipartite graph G is constructed and the edge bounds ini-
tialized. Then, the edges in G are traversed in order of increasing bound. Each
edge is considered for assignment to M with some fixed probability �, until an edge
is chosen. If the candidate edge can be fixed and at least one complete matching
still exists, it is appended to M , the other edges incident on its terminal nodes are
pruned, and the bounds for the remaining edges in G are tightened.

To propose ˆ

M , we choose a random index j 2 [1, |M |]. Then, we re-initialize G,
and fix the first j edges in M . To produce the rest of the matching, we repeat the
iterative edge selection process described above. In our implementation, we take
� = .7 and N = 100; � is chosen on a per-domain basis.

5.10 Learning Cost Models

While flexible tree matching can be used with any cost model comprising weights
wr, wa, ws, and wn, it is often desirable to learn a model that will produce map-
pings with domain-dependent characteristics. In particular, given a set of trees and
exemplar matchings defined between them, we can use the generalized perceptron
algorithm to learn weights under which the example matchings are minimal [40].

First, we reformulate the cost of a mapping c(M) in terms of a weight vector
w = hwr, wa, ws, wni. For each edge, we compute the difference between the real-
valued labels of its terminal nodes and the exact ancestry and sibling costs, and
concatenate these values along with a Boolean no-match indicator into a feature
vector fe. The edge cost can then be computed as c(e) = wT fe. Given a mapping
M , the algorithm assembles an aggregate feature vector FM =

1
|T1|+|T2|

P
e2M fe to

calculate the mapping cost c(M) = wTFM .

In each training iteration, the perceptron randomly selects a pair of trees and
an associated mapping M from the training set. Next, it computes a new mapping
ˆ

M ⇡ argminM wT
i FM using the current cost model wi. For the first iteration, w0 = 0.

Based on the resultant mapping, a new aggregate feature vector FM̂ is calculated,
and the cost model is updated by wi+1 = wi + ↵i

�
FM̂ � FM

�
, where ↵i = 1/

p
i+ 1

is the learning rate.
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Source Target Synthesized

Figure 5.10: A current limitation of the content transfer algorithm illustrating the
challenges of HTML/CSS. The target page’s CSS prevents the bounding beige box
from expanding. This causes the text to overflow (synthesized page). Also, the
target page expects all headers to be images. This causes the “About Me” header to
disappear (synthesized page). An improved content transfer algorithm could likely
address both of these issues.

While the perceptron algorithm is only guaranteed to converge if the training set
is linearly separable, in practice it produces good results for many diverse data sets
[40]. Since the weights may oscillate during the final stages of the learning, the
final cost model is produced by averaging over the last few iterations.

5.11 Web Content Retargeting

Bricolage uses flexible tree matching to compute a minimum-cost mapping between
visual page hierarchies which balances structural and semantic constraints. To learn
a cost model that will produce human-like mappings, Bricolage trains the parame-
ters of the algorithm, w, on the set of human mappings collected during the online
study. The feature vector fe is computed based on the ancestry and sibling relation-
ships in the visual hierarchy, and a subset of the per-element features computed and
stored by Webzeitgeist.

Once a cost model is trained, it is fed to the matching algorithm, which uses it
to predict mappings between any two pages. Bricolage then uses these computed
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mappings to automatically transfer the content from one page into the style and
layout of another. In its segmented page representation, page content (text, images,
links, form fields) lives on the leaf nodes of the page tree. Before transferring
content, the inner HTML of each node in the source page is preprocessed to inline
CSS styles and convert embedded URLs to absolute paths. Then, content is moved
between mapped nodes by replacing the inner HTML of the target node with the
inner HTML of the source node.

Content matched to a no-match node can be handled in one of two ways. In
the simplest case, unmatched source nodes are ignored. However, if important
content in the source page is not mapped, it may be more desirable to insert the
unmatched node into the target page parallel to its mapped siblings, or beneath its
lowest mapped ancestor.

This approach works well for many pages. Occasionally, the complexity and
diversity of modern Web technologies pose practical challenges to resynthesizing
coherent HTML. Many pages specify style rules and expect certain markup pat-
terns, which may cause the new content to be rendered incorrectly (Figure 5.10).
Furthermore, images and plugin objects (e.g., Flash, Silverlight) have no CSS style
information that can be borrowed; when replaced, the new content will not exhibit
the same visual appearance and may seem out of place. Lastly, embedded scripts
are often tightly coupled with the original page’s markup and break when naïvely
transferred. Consequently, the current implementation ignores them, preventing
dynamic behavior from being borrowed. A more robust content transfer algorithm
is required to address these issues and remains future work.

5.12 Results

We demonstrate the efficacy of Bricolage in two ways. First, we show several prac-
tical examples of Bricolage in action. Second, we evaluate the machine learning
components by performing a hold-out cross-validation experiment on the gathered
human mappings.
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Figure 5.12: Bricolage used to rapidly prototype many alternatives. Top-left: the
original Web page. Rest: the page automatically retargeted to three other layouts
and styles.
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Figure 5.13: Bricolage can retarget Web pages designed for the desktop to mobile
devices. Left: the original Web page. Right: the page automatically retargeted to
two different mobile layouts.

5.12.1 Examples

Figure 5.12 demonstrates the algorithm in a rapid prototyping scenario, in which
an existing page is transformed into several potential replacement designs. Creat-
ing multiple alternatives facilitates comparison, team discussion, and design space
exploration [53, 78, 174]. Figure 5.13 demonstrates that Bricolage can be used to
retarget content across form factors, showing a full-size Web page automatically
mapped into two different mobile layouts.

Figure 5.11 illustrates an ancillary benefit of Bricolage’s cost model. Since Brico-
lage searches for the optimal mapping between pages, the returned cost can be
interpreted as an approximate distance metric on the space of page designs. Al-
though the theoretical properties of this metric are not strong (it satisfies neither
the triangle inequality nor the identity of indiscernibles), in practice it may provide
a useful mechanism for automatically differentiating between pages with similar
and dissimilar designs.
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5.12.2 Machine Learning Results

To test the effectiveness of Bricolage’s machine learning components, we ran a hold-
out test. We used the 44 collected mappings outside the focus set as training data,
and the mappings in the focus set as test data. The perceptron was run for 400

iterations, and the weight vector averaged over the last 20. The learned cost model
was used to predict mappings for each of the 8 focus pairs. Table 5.1 shows the
comparison between the learned and reference mappings using three different met-
rics: average similarity, nearest neighbor similarity, and percentage of edges that
appear in at least one mapping.

The online mapping experiment found a 78% inter-mapping consistency be-
tween the participants. This might be considered a gold standard against which
page mapping algorithms are measured. Currently, Bricolage achieves a 69% con-
sistency. By this measure, there is room for improvement. However, Bricolage’s
mappings overlap an average of 78% with their nearest human neighbor, and 88%

of the edges generated by Bricolage appear in some human mapping.

This structured prediction approach was motivated by the hypothesis that ances-
try and sibling relationships are crucial to predicting human mappings. We tested
this hypothesis by training three additional cost models containing different feature
subsets: visual terms only, visual and ancestry terms, and visual and sibling terms.
Considering only local features yields an average nearest neighbor match of 53%;
mapping with local and sibling features yields 67%; mapping with local and ances-
try features yields 75%. Accounting for all of these features yields 78%, a result that
dominates that of any subset. In short, flexibly preserving structure is crucial to
producing good mappings.

5.13 Implementation

Bricolage’s page segmentation, mapping, and machine learning libraries are im-
plemented in C++ using the Qt framework, and use Qt’s WebKit API in order to
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interface directly with a browser engine. Once a cost model has been trained, Brico-
lage produces mappings between pages in about 1.04 seconds on a 2.55 Ghz Intel
Core i7, averaging roughly 0.02 seconds per node.

The corpus pages are archived using the Mozilla Archive File Format and hosted
on a server running Apache. For efficiency, page segmentations and associated
DOM node features are computed and cached for each page when it is added to the
corpus. Each feature has its own dynamic plug-in library, allowing the set of features
to be extended with minimal overhead, and mixed and matched at runtime. The
Bricolage Collector is written in HTML, Javascript, and CSS. Mapping results are
sent to a centralized Ruby on Rails server and stored in a SQLite database.

5.14 Discussion and Future Work

This chapter introduced the Bricolage algorithm for automatically transferring de-
sign and content between Web pages. Given the rapid rate at which web technology
changes, automatic retargeting offers a scalable solution for keeping existing pages
up-to-date. There are many diverse future use cases for Bricolage, including making
pages responsive, transforming HTML for screen reader accessibility, and creating
low bandwidth versions of designs.

Bricolage’s major algorithmic insight was a tunable algorithm for flexible tree
matching for capturing the structural relationships between elements, and using an
optimization approach to balance local and global concerns. This algorithm may
be useful for matching in many domains in which hierarchy is suggestive rather
than definitive. The current Bricolage implementation is HTML specific; however,
in principle, the retargeting algorithm can be applied to any document with hier-
archical structure such as slide presentation and vector graphics files. With richer
vision techniques [182], the Bricolage approach might extend to documents and
interfaces without accessible structure.
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Table 5.1: Results of the hold-out cross-validation experiment. Bricolage performs
substantially worse without both the ancestry and sibling terms in the cost model.



Chapter 6

Structural Semantics

Researchers have long envisioned a Semantic Web, where unstructured Web content
is replaced by documents with rich semantic annotations. Unfortunately, this vision
has been hampered by the difficulty of acquiring semantic metadata for Web pages.
This chapter introduces a method for automatically "semantifying" structural page
elements: using machine learning to train classifiers that can be applied in a post-
hoc fashion. We focus on one popular class of semantic identifiers: those concerned
with the structure — or information architecture — of a page. To determine the
set of structural semantics to learn and to collect training data for the learning, we
gather a large corpus of labeled page elements from a set of online workers. We
discuss the results from this collection and demonstrate that our classifiers learn
structural semantics in a general way.

6.1 Introduction

Although Web search engines today offer more than just ranked results (e.g., price
comparisons for products, weather forecasts for particular city), most queries in the
long tail still involve collecting, organizing and understanding information from
multiple pages, which can be difficult and time-consuming [15]. One reason search
engines find it difficult to directly answer queries is that Web content is largely
unstructured [94]. Although Web formats provide rich presentation semantics for

79
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displaying Web data, they typically offer little support for other kinds of automated
processing. This desire for flexible reuse of Web information has engendered a
vision of a Semantic Web, where documents are annotated in a way that allows
machines to “understand” Web content and respond to complex human requests
based on their meaning [14].

While information extraction has traditionally targeted textual information,
some recent attempts to semantify the Web have focused on page structure rather
than content. In HTML 5, the World Wide Web Consortium added semantic tags
(e.g. <ARTICLE>, <NAV>, <FIGURE>, <SUMMARY>, etc.) to help developers de-
scribe the information architecture of pages [154, 84]. These structural semantics
are a small step on the road to a semantic “web of data” [160], aiding applica-
tions like search [50], retargeting [111], remixing [31], and user interface enhance-
ment [178].

Relying on Web designers to annotate pages with semantic markup, however,
is problematic. Designers, many of whom are primarily concerned with how their
Web content is displayed rather than how easily it can be reused, lack strong in-
centives to invest time and effort augmenting pages with tags that do not produce
presentational benefits. As semantic specifications evolve, pages must be contin-
ually re-engineered even if their content remains unchanged. Furthermore, there
is no universal consensus about the appropriate range and specificity of semantic
terms to use. An alternative strategy is to allow end-users to add personal seman-
tics to page data on a case-by-case basis [87, 94], but these manual techniques are
difficult to scale to the whole Web.

This thesis presents a different tactic for adding structural semantics to Web
pages: learning classifiers for page elements from data. With accurate semantic
classifiers, pages could be semantified automatically, in a post-hoc fashion, decou-
pled from the design and authoring process [186]. To this end, we present a classifi-
cation method based on support vector machines [42], trained on a large collection
of human-labeled page elements and employing a feature space comprised of visual,
structural, and render-time page properties.
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Figure 6.1: The interface used in the label collection study. Page elements are high-
lighted in blue upon mouseover (left). After clicking on the highlighted element,
users enter semantic labels into a textbox (right).

Although some approaches to adding post-hoc semantics are domain-specific
and/or make assumptions about the layout of Web documents, we aim to use a
general set of semantic terms to describe structural elements across a wide range of
pages. As a result, these terms can be applied to any HTML page that can be loaded
and displayed in a browser.

To identify the set of structural semantics to learn, we take a crowdsourced
approach. When the W3C selected the set of semantic tags to add to HTML 5,
they focused on how content producers view the information architecture of pages
[131]. We, instead, turn our attention to content consumers and they way they de-
scribe structural semantics. We recruited 400 participants on Amazon’s Mechanical
Turk [9], collecting more than 21,000 semantic labels over a corpus of over 1400
Web pages. We use these labels to determine the set of classifiers and provide train-
ing data for the learning.

The chapter describes the online label collection study and its results, and
demonstrates that SVM-based classifiers can produce prediction accuracies as high
as 94.7%.
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6.2 Crowdsourced Label Collection

To drive the development of semantic classifiers, we collected a set of labeled page
elements in an online study. We recruited 400 US-based workers from Amazon’s
Mechanical Turk to apply more than 21,000 labels across nearly 1500 Web pages.
Every participant applied semantic labels to at least ten elements on each of five
pages. The pages used in the study were drawn from the Webzeitgeist design repos-
itory [110], which provides visual segmentations and page features for more than
100,000 Web pages.

The label collection process comprised two phases: a focused phase, and a broad
phase. In the focused phase, we hand-selected fifty pages from ten popular site gen-
res that were adapted from [54]: e-commerce, news, community, informational,
corporate, small company, blog, personal, Web service, and Web resource. A hun-
dred participants each labeled ten of these pages, producing 6351 labels and en-
suring that many page elements were labeled by more than one person. In the
broad phase, 300 users each labeled five pages chosen randomly from the corpus,
producing 15,644 labels.

6.2.1 Procedure

First, the Mechanical Turk interface redirected participants to a tutorial on the la-
beling interface. The instructions directed users to apply semantic labels to the five
most important and the five most interesting elements on the page. Participants
were also instructed to avoid labeling many elements of the same type, to encour-
age diversity in the data set.

Given our focus on structural semantics, workers were told to choose labels that
described the element’s role in the information architecture of the the page rather
than its content. For instance, a picture of a silverware set on a shopping page should
be labeled PRODUCT_IMAGE instead of SILVERWARE. Workers were also instructed
to chose the most specific applicable label, eschewing generalities such as TEXT. To
proceed to the labeling task, users were shown a few basic examples of appropriate
labels, and required to correctly apply one label to a sample element.
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The labeling interface presents workers with a screenshot of a Web page (Fig-
ure 6.1). When a participant hovers the mouse over part of the page, the corre-
sponding element in the page’s visual segmentation is highlighted. Clicking on an
element allows the user to enter a text label for it, which can be edited later by
clicking on the element again. When typing a label, users are prompted with a
drop-down list of autocompleted suggestions — sourced from a small pilot labeling
study — which they may use or ignore. Workers apply at least ten elements to each
page before moving on to the next; after five pages have been labeled, the interface
provides an identifier to the worker to verify the task’s completion.

6.2.2 Results

Participants produced 21,995 labels across 16,753 distinct elements in 1490 Web
pages. There were 2657 distinct labels in total, 716 of which occurred more than
once, and 629 of which were applied by more than one user. Each participant used
23.6 distinct labels on average (min = 3, max = 76, � = 9.7). Excluding labels
from the autocomplete list, participants generated an average of nine original label
names (min = 0, max = 60, � = 10).

In addition to general characteristics of the resulting dataset, the following sec-
tions provide two statistical analyses for better understanding the labels that partic-
ipants produced. First, we examined label co-occurrence, to determine which labels
different workers commonly assign to the same page elements. Second, we ex-
amined the spatial distribution of labels to determine where certain kinds of page
elements commonly appear on a page.

Characteristics of Dataset

The collected labels cover a wide range of concepts, with tags as general as IMAGE

and as specific as COPYRIGHT. Workers tagged some elements common to most
Web pages, such as NAVIGATION, and others that are highly domain specific, such
as PRODUCT_IMAGE. The ten most common labels were NAVIGATION_ELEMENT,
NAVIGATION_BAR, LOGO, SEARCH, SOCIAL_MEDIA, ADVERTISEMENT, ARTICLE_TITLE,
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navign-emt
navign-b

Figure 6.2: A tag cloud of the 110 most common semantic labels, sized to show
relative frequency. The tags highlighted in red have direct analogues in HTML 5.

MAIN_CONTENT, BLOG_POST, and AND CONTACT_LINK, with frequencies ranging
from 1772 to 436. The mean label frequency was 8.3 (min = 1, max = 1772,
� = 65.8).

Figure 6.2 shows the labels’ relative frequencies in a tag cloud. Labels which
have direct analogues to any one of the 106 tags in HTML 5 are highlighted
in red. The 17 HTML tags to which these labels correspond include <A>,
<ADDRESS>, <ARTICLE>, <BLOCKQUOTE>, <BODY>, <CAPTION>, <FIGCAPTION>,
<FOOTER>, <FORM>, <H1-H6>, <HEADER>, <HGROUP>, <IMG>, <INPUT>,
<NAV>, <TIME>, and <VIDEO>. At a high level, the relatively small overlap be-
tween our crowdsourced labels and the set of available HTML tags illustrates the
difficulties of developing a semantic ontology that is sufficiently expressive and
complete.
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Label Co-occurrence

The dataset revealed that not all people will assign the same semantic label to a
given page element. In addition, some workers may use different descriptors to
label the same concept.

To more thoroughly understand how labels relate to one another, we created
a co-occurrence matrix for the 85 most-frequent labels, each of which was used
twenty or more times. We form an 85 ⇥ 85 symmetric matrix, where the value
at (i, j) is the number of times that tag i and tag j were used to label the same
page element, normalized by the total number of uses of i and j. Then, the matrix
is reordered using Anti-Robinson seriation to form clusters of co-occurring labels
along the diagonal [26].

Figure 6.3 shows the resulting matrix, with portions of the diagonal magnified to
show co-occurring labels. The cell opacities represent the degree of co-occurrence
between the corresponding labels: darker cells indicate more co-occurrences while
lighter cells indicate fewer. A number of clusters with labels like RATING and REVIEW

(panel E) simply point out elements that are closely related. Some show work-
ers using different words to describe the same concept, like COMPANY_LOGO and
LOGO (panel A). Other groupings reflect a lack of a clear consensus on the role
of elements such as FEATURED_ITEM and PRODUCT_IMAGE (panel I). Labels like
SITE_TITLE and HEADER (panel C) describe the same general structure with varying
levels of specificity.

Overall the distinct clusters illustrate where users agreed upon and were consis-
tent with their their semantic vocabulary. The heavy concentration of high-opacity
cells along the diagonal indicates strong clusters of co-occurrence.

Spatial Distributions

Another useful way to gain insight about the labels participants produced is to ex-
amine the spatial distributions of their corresponding page elements. For a given
label, we identify the set of page elements to which the label was assigned, and
obtain the bounding rectangle for each one from the page’s DOM tree. We rescale
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these rectangles to the range [0, 1] ⇥ [0, 1] to make the coordinates comparable be-
tween pages, and rasterize them into a floating-point accumulation buffer. Nor-
malizing the resultant image so that its pixel values sum to one approximates the
two-dimensional spatial probability distribution of the tag. The value of any given
point in the image is the probability of the label appearing in that position on a
page.

Figure 6.4 shows spatial distributions for 28 popular labels. While some distri-
butions useful but unsurprising (HEADER tags appear almost universally at the top of
pages), others give more insight into the structure of Web pages. Note, for instance
the strong concentration of LOGIN and SEARCH elements in the upper right corner of
pages, the bimodal distribution of ADVERTISEMENT elements between sidebar and
header, and the high frequency of EXTERNAL_LINKS along and increasing toward the
middle of the right sidebar. Taken together, the strong spatial correlations that many
of the collected tags exhibit provide a visual justification for learning classifiers for
structural semantics.

6.3 Learning Structural Semantic Classifiers

To evaluate the feasibility of learning structural semantics from data, we trained
binary SVM classifiers for the study’s 40 most frequent labels. To determine the
prediction accuracy of the classifiers, we ran a hold-out test on labeled pages. Fi-
nally, we used the learned classifiers to identify and rank semantic elements in a
large dataset of pages.

6.3.1 Training

For each distinct label, we constructed a training set and a test set of page el-
ements. The training set consisted of 80% of the page elements to which the
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label had been applied (the positive examples), and twice that number of ran-
domly selected page elements to which other labels were applied (the nega-
tive elements). The test set consisted of the remaining 20% of positively la-
beled page elements, and twice that number again of randomly selected negative
elements.

To drive the learning, each page element was associated with a 1,679-dimensional
feature vector provided by the Webzeitgeist repository. These features were drawn
from three categories: render-time HTML and CSS properties computed by the
DOM (N = 691), GIST descriptors computed on elements’ rendered images (four
scales and five orientations per scale on a 4 ⇥ 4 grid; N = 960) [139], and simple
structural and computer vision properties provided by Webzeitgeist (N = 28).

We trained three regularized support vector classification SVMs for each label:
one with DOM features, one with GIST features, and a third using all the features
together. We used LIBSVM to perform the training [32], with radial basis kernels
and � =

1
1679 . Once a classifier is trained, it can be applied to a page element in

under 1µs.

6.3.2 Prediction Accuracy Results

The prediction training and test accuracies for each classifier and data model are
shown in the inset table, where the first column represents the number of positive
examples in the training set for the corresponding label. Test accuracies ranged
from 54.9% for COMMENT to 94.7% for ENTIRE_PAGE. This variation can be at-
tribute to a number of reasons. First, some elements are structurally more consis-
tent and/or prominent than others, for example FOOTER elements generally occupy
a significant space at the bottom of a page, while DATE can be a variable-width text
node that occurs anywhere on the page. While elements such as LOGO are clearly
defined, others such as FEATURED_ITEM may exhibit more variation in the types of
elements they refer to. Number of examples and structural dependencies may also
affect prediction accuracy.



90 CHAPTER 6. STRUCTURAL SEMANTICS

The average test accuracy for the DOM, GIST, and ALL models were 74.6%,
71.7%, and 76.6% respectively. The combined model equaled or outperformed the
DOM- and GIST-alone models for all but seven of the forty labels; examining the
training accuracy for those nine shows that this discrepancy is mostly attributable
to overfitting. While these results are far from perfect, all of the classifiers do better
than random, and most substantially so.

6.3.3 Identifying Structural Elements

To show the learned classifiers in action, we applied twelve of them across a
database of 500k page elements spanning 3000 pages. We proceeded to rank the
results in order of decreasing probabilities, which were obtained via the method
described in [187]. A few representative results for each classifier are shown in Fig-
ure 6.5; page elements that appeared to be mis-classified are marked with a red
border.

These examples offer some insight into the performance of the classifiers. Most
of the highly-ranked elements are classified correctly, despite their diverse contexts
and compositions. Given that these classifiers are trained only on visual and struc-
tural data, their expressive power provides support for the notion that structural
semantics can be learned without requiring more complex content-based seman-
tics (see, for instance, SLOGAN). Many of the errant classifications are subtle, and
might plausibly confuse a human worker: see for instance ARTICLE_TITLE, which
classifies several titles that are not, strictly speaking, associated with articles; and
NAVIGATION_BAR, which identifies page elements filled with links directing users to
other sites.

6.4 Incentives For Semantics

This chapter demonstrates how post-hoc structural semantic classifiers can boot-
strap the semantic Web. These classifiers allow application developers to build
technology operating under the assumption that most Web pages have semantics;
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DOM GIST ALL

Label # Train Test Train Test Train Test

ENTIRE_PAGE 74 91.9 94.7 86.9 75.4 94.6 94.7
SEARCH 551 88.7 88.2 82.8 84.5 91.8 91.5
FOOTER 186 83.0 78.0 74.6 75.9 90.0 89.4
IMAGE 169 84.0 81.0 79.7 79.4 86.4 88.9
SIDEBAR 133 86.0 84.8 82.7 84.8 86.7 87.9
COPYRIGHT 206 86.1 82.1 75.7 76.3 88.4 87.8
NAVIGATION_BAR 901 80.7 83.4 74.6 72.7 86.5 87.4
LOGO 770 80.7 84.0 77.9 77.6 87.0 87.3
ARTICLE_TITLE 373 84.2 82.8 80.3 82.4 86.7 87.1
MAIN_CONTENT 350 82.8 82.8 78.9 80.1 83.0 83.1
PRODUCT_IMAGE 65 79.5 79.2 77.4 75.0 85.1 81.3
THUMBNAIL 83 84.7 76.2 79.5 73.0 86.7 81.0
HEADING 134 79.4 87.3 74.9 67.6 77.9 80.4
ARTICLE 237 75.2 72.9 81.4 79.7 85.9 80.2
LOGIN 222 80.8 73.9 77.8 74.5 84.5 78.8
ADVERTISEMENT 487 79.2 76.2 75.2 72.4 85.6 77.9
NAV_ELEMENT 1138 75.9 75.4 72.6 73.5 78.6 77.8
VIDEO 107 74.8 71.6 81.9 72.8 81.9 77.8
BLOG_POST 259 75.5 72.3 73.6 73.8 81.9 77.4
HEADER 265 78.5 77.3 69.2 67.2 80.8 77.3
CONTACT_LINK 278 76.7 75.2 74.8 71.0 80.7 76.2
SOCIAL_MEDIA 514 75.0 72.7 76.5 70.1 82.2 75.0
SITE_TITLE 272 75.9 74.0 76.1 70.6 81.3 75.0
DATE 91 79.1 69.6 78.0 73.9 79.5 73.9
IMAGE_GALLERY 94 76.6 76.8 75.2 71.0 82.3 73.9
RECOMM_LINKS 137 69.8 66.7 68.9 66.7 76.4 73.5
CONTACT_INFO 183 77.2 67.4 69.9 68.1 79.6 73.2
LANG_SELECT 70 77.1 68.6 75.2 70.6 83.3 72.5
PROD_DESC 232 77.2 71.8 74.7 68.4 77.0 72.4
SLOGAN 79 69.6 63.3 70.5 70.0 76.4 70.0
AUTHOR 94 72.7 62.3 67.4 68.1 70.6 69.6
SUBSCRIBE_LINK 158 68.1 67.5 69.6 67.5 71.3 68.4
FEATURED_ITEM 107 71.3 71.6 73.5 58.0 76.9 66.7
COMMENTS_LINK 93 80.6 71.0 67.7 66.7 70.3 66.7
AFFILIATE_LINK 78 66.7 66.7 66.7 66.7 66.7 66.7
EXTERNAL_LINKS 270 67.2 66.2 68.9 66.2 73.8 66.2
SIGN_UP 134 74.9 65.7 69.2 66.7 73.9 65.7
NEWS_ITEM 121 68.9 65.6 71.1 64.4 72.2 65.6
DOWNLOAD_LINK 77 73.6 63.2 66.7 66.7 74.5 64.9
COMMENT 70 77.6 76.5 75.7 56.9 78.6 54.9

Table 6.1: The prediction training and test errors for each of our learned classifiers
using the DOM, GIST, and ALL feature models.
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NAVIGATION ELEMENT

Figure 6.5: The seven highest-ranked results in our database of 500k pages for
each of twelve classifiers learned by our method. Page elements were ranked by
probability estimate, and a maximum of one node per page is displayed. Elements
which were classified incorrectly are highlighted in red.
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ADVERTISEMENT
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Figure 6.6: Eight learned classifiers used to identify structural semantic elements
on a page with 67 DOM elements. Correct classifications are shown in green, false
positives in solid red, and false negatives in dashed red.

as more semantic tools become available, more content producers will have incen-
tives for adding semantics to their markup. On the flip side, designers themselves
can use the classifiers to bootstrap semantics on the pages that they create or have
already created. Others systems incentivize people to adopt semantics in alternative
ways.

6.4.1 Personal Content Management

Some systems provide content consumers with incentives for manually adding per-
sonal semantics to pages they visit often [87, 94, 51, 50]. These systems usually
leverage pattern matching and existing page semantics to semi-automate the la-
beling process, and afford users new ways of interacting with the annotated data
in the future [52]. For example, by right-clicking on a “person” record, an end-
user can choose to email the person, and have a compose window pop-up with the
right email address already filled in. Moreover, these personal semantic records
can be shared so that each individual can benefit from work done by others in the
community.
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6.4.2 Design Reuse

Structural semantic concepts facilitate design reuse in CSS frameworks such as
Twitter’s Bootstrap [22] and Zurb’s Foundation [60]. These frameworks target de-
velopers who can write code, but do not want to spend time mucking with CSS files
to get the design details right. To build a nice looking Web page with a responsive
layout, developers simply have to write HTML using the Bootstrap or Foundation
specified classes. Most of these classes correspond to structural semantic concepts
(e.g., “navbar”, ”breadcrumbs”, “pagination”) and have styles and behaviors pre-
defined for them in stylesheets and javascript files provided by the framework. By
doing a lot of the design work for free, these frameworks incentivize content pro-
ducers to use structural semantic annotations in their markup.

Similarly, Benson et al. propose design reuse as the catalyst for getting content
producers to adopt more semantic class names [13]. Instead of the fixed set of class
names supported by CSS frameworks, they propose that CSS schemas will emerge
in a “grassroots fashion” led by Web designers who want to their code to be reused
by the masses.

6.5 Discussion and Future Work

This chapter introduced a technique for adding post-hoc structural semantics to the
Web, demonstrating that a relatively simple machine learning technique trained on
a corpus of human annotations and design-based features can identify semantic
elements in pages. Many interesting avenues for future work remain.

6.5.1 Better Classifiers

First, it is important to note that our classifiers cannot necessarily be used to en-
able one-click annotation of pages in their current form. Pages in our training set
averaged 1380 DOM nodes per page; with this many elements, even a 99.9% per-
classifier accuracy rate from a classifiers trained on a perfectly labeled set of nodes
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would yield several misclassified nodes on every page. These results would be ac-
ceptable for some real-world applications that can tolerate false positives (such as
Web search), however the success rate would be inadequate for those requiring
near-perfect accuracy (Figure 6.6).

Several possibilities for improving the learning come to mind. Using our clas-
sifiers to bootstrap an online learning process is one obvious approach, likely to
significantly reduce overfitting and greatly simplify the acquisition of additional
training data. Adding more sophisticated structural and computer vision features
might is another possibility: estimates of foreground area, for instance, might prove
useful in recognizing logos, while structural features like “number of links to exter-
nal domains” could improve the classification of navigation bars.

Another promising approach is to turn to machine learning methods that make
better use of page structure. Currently, the classification algorithm assumes that
labels are independent between elements, a largely faulty assumption. Structured
SVMs could be used to predict labels for the entire page as a whole [179]. Deep
learning techniques, like those based on recursive neural networks — might allow
the development of a more structurally-sensitive feature space. These methods
would enable easier classification of elements whose semantic function is highly
dependent on its relation to other elements in the page hierarchy [166].

6.5.2 Structural Semantic Applications

Structural semantic classifiers have the potential to increase the utility and accu-
racy of many of the design mining applications presented in this dissertation. Many
of the queries shown in Chapter 4 involved structural semantic terms (e.g., “find
headers that take up more than 20 percent of the page’s area”). Currently, Webzeit-
geist can only use HTML5 tags and microformatting when they are available to
perform structural semantic searches: automatic classifiers could be used to apply
these queries to the data set as a whole. Similarly, when Bricolage executes its page
mapping algorithm (Chapter 5), it implicitly assigns structural semantic labels to
page regions during matching. Explicit structural semantics would make Bricolage
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sidebar (desktop) sidebar (mobile) twitter (desktop) twitter (mobile)

Figure 6.7: Spatial probability distributions for elements labeled “sidebar” (left)
and “twitter” (right) in desktop and mobile settings.

faster by reducing the matching algorithm’s search space, and increase the overall
mapping accuracy.

In fact, structural semantics are ofen the cornerstone of design reuse and remix-
ing on the Web: template-based Web authoring tools like Google’s Blogger [20]
(Figure 6.8) and CSS frameworks like Twitter Bootstrap [22] all expose structural
semantic concepts as end-user knobs. In the future, structural semantic classifiers
could be used to automatically generate page designs for different layouts (Fig-
ure 6.7) or personalize how people view information on their devices [21].



6.5. DISCUSSION AND FUTURE WORK 97

Figure 6.8: Google’s Blogger allows users to add and drag structural semantic com-
ponents to configure page layout [20].



98 CHAPTER 6. STRUCTURAL SEMANTICS



Chapter 7

Conclusion

This thesis demonstrates for the first time the value of large-scale mining of design
data, and offers a new class of data-driven problem-solving techniques to the design
community. In particular, it makes the following set of contributions:

• Design mining for the Web: principles for indexing, analyzing, and adapting
Web design data

• The Webzeitgeist platform for design mining, which comprises a repository of
over 100,000 Web pages and 100 million design elements

• The Bento page segmentation algorithm for canonicalizing the DOM and gen-
erating structured, visual representations of pages

• A Design Query Language (DQL) for building design mining applications

• A design-based search engine that allows users to search Web designs at mul-
tiple scales

• The Bricolage algorithm for automatically transferring design and content be-
tween Web pages

• An tunable algorithm for flexible tree matching which can be used to comput-
ing mappings in domains where hierarchy is suggestive rather than definitive

99
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• A set of classifiers for predicting the structural role of Web page elements from
design data

7.1 The Future of Design Mining

While this thesis showcases several concrete design interactions, we imagine that
the applications that eventually arise from design mining will greatly outstrip our
power to predict them. There are a number of avenues for future work.

7.1.1 Scaling Up

For design mining applications to be useful to designers, they must function at a
scale commensurate with the size of the Web. Although Webzeitgeist facilitates de-
sign analysis at scales an order of magnitude larger than prior work, recent break-
throughs in unsupervised learning have come from training models with billions of
parameters on datasets with millions of examples [114, 47, 19]. In a domain as
diverse as the Web, it is not hard to imagine that such models might be approprate:
after all, in the 100,000 page repository crawled by Webzeitgeist, only 68 pages
with horizontal layouts were found, accounting for slightly less than 0.07% of the
repository. How many more pages must we crawl to compute robust statistics over
horizontal page designs? How much data do we need to infer latent design patterns
in the space of Web designs [19], or to understand analytically what makes eBay
look like eBay and Google look like Google [47]?

7.1.2 Leveraging Structure

One way that design is distinct from other data-rich domains such as text or natural
images is that the representations designers employ are typically annotated with
explicit structure. On the Web, this structure comes in the form of DOM trees;
in geometric modeling, for instance, this structure is found in scene graphs used
to define relationships between components [10]. As we saw in Chapter 5, taking
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Figure 7.1: Web design tasks formulated as probabilistic inference over an induced
grammar of page designs. Left: the most likely page with a logo, three navigation
elements, a hero-image, and a three-column layout. Right: the most likely page
with three navigation elements, a hero-image, and a two-column layout.

structure into account can drastically improve the performance of machine learning
applications and mathematical models. We hypothesize that taking full advantage
of structure is the key to enabling many new and useful design interactions.

Duplicating data in a graph database [136] may make it easier to formulate
complex queries that express hierarchical constraints (e.g., “find all the nodes whose
children are all <IMAGE> elements”). Taking into account the interdependencies
between structural semantic concepts (e.g., navigation elements are usually chil-
dren of navigation bars) via structured SVMs [179], may yield more robust seman-
tic classifiers. Using recursive neural networks [165] to compute fixed-dimensional,
structurally-sensitive representations [166] over design elements may allow more
efficient design queries.

7.1.3 Design as Inference

Design patterns codify best practices into a collection of formal rules for designers,
setting out principles of composition, describing useful idioms, and summarizing
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common aesthetic sensibilities. While such guidelines can be invaluable to design-
ers, they are also difficult to operationalize, and must be painstakingly formulated
and compiled by experts [7, 67, 23, 54].

A more attractive proposition is to learn patterns directly from examples, and
encapsulate them in a representation that can be accessed algorithmically [88]. In
a recent paper [175], we cast this problem as grammar induction, bringing tech-
niques from natural language processing and structured concept learning to design.
Given a corpus of hand-labeled Web designs, we induce a probabilistic formal gram-
mar over these exemplars. Once learned, this grammar gives a design pattern in a
human-readable form that can be used to synthesize novel designs and verify extant
constructions.

Inducing Web design patterns from a corpus of extant pages enables a new
class of design interactions which exploit the rich mathematical structure of gen-
erative probabilistic models [112]. In particular, we have demonstrated how com-
mon design tasks can be formulated as probabilistic inference problems and solved
via stochastic optimization. For instance, by defining a smooth function that
scores page designs based on how closely they conform to a given specification,
component-based Web design can be cast as a MAP estimation problem, and solved
with Markov chain Monte Carlo methods (Figure 7.1).

Component-based Web design is not the only interaction technique that can be
profitably cast as probabilistic inference. In fact, it seems likely that many design
applications can be enabled with similar machinery. Developing tools for sketch-
based Web design, adding autocomplete capabilities to direct manipulation editors,
and improving existing designs via stochastic optimization are just a few promising
directions.

7.1.4 Expanding to New Domains

Webzeitgeist currently harvests all the design components that contribute to the
visual appearance of a Web page, but a page’s design is not just visual: it also
includes a set of interactions and behaviors that are triggered by user inputs such as
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key presses and mouse actions. In the future, we could mine design interactions —
in addition to visual attributes — during a crawl. In order to detect interaction on
pages, changes in the DOM need to be registered when user inputs are performed;
Mesbah et al.’s crawler for AJAX-based Web applications could provide a starting
point for this kind of interaction mining [128].

Furthermore, as more and more creative work is done digitally and shared in
the cloud, we hope that the lessons we learn and the techniques we develop to
answer questions in Web design can eventually be transferred to other domains.
The Web has many more datasets to offer beyond Web pages themselves, and rich
repositories of 3D models [3], interior decor [90], and fashion [145] already exist.
Layering crowdsourced annotations or using techniques from computer vision and
computer graphics can provide the same types of rich metadata and structure in
these domains that are naturally present in Web design [35, 56, 12, 16].

7.1.5 Design and Creativity Science

Fundamentally, what Webzeitgeist affords us is the ability to empirically study de-
sign at scale. In the long run, we hope that drawing analogy to the way we process
and understand information on the Web will allow us to develop a similarly deep
grasp design, and to answer questions like: What makes designs usable [121]?
What makes them beautiful [191, 121, 151]? What aspects of design are durable
or fashionable [5, 176]? Which parts are driven by evolution, or constructed by
culture [150]? How closely tied are the different aspects of design to our cognitive,
perceptual, and motor abilities [66, 58]? How can Google use design mining to
update their rankings of site quality and trustworthiness [122, 142]?

Similarly, while work in cognitive science has studied the impact of examples on
creativity [73, 164, 127, 109], few experiments have considered cognitive priming
in light of the modern Web or using modern computational tools [74]. Given the
scale and diversity of examples available on the Web, are psychological effects like
conformity and fixation as relevant today as paradox of choice? How can we help
users transfer design concepts from one creative domain to another [89]? Can we
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build and validate computational models of human creativity that help us under-
stand and enhance design?

7.2 Design Mining on the Web

For more information about the material described in this thesis — including links
to source code and software — please visit http://hci.stanford.edu/research/
webzeitgeist.
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